Maximum Entropy Deep Inverse Reinforcement Learning

作者: Ingmar Posner , Markus Wulfmeier , Peter Ondruska

DOI:

关键词:

摘要: … functions in the context of solving the inverse reinforcement learning (IRL) problem. We show in this context that the Maximum Entropy paradigm for IRL lends itself naturally to the effi…

参考文章(26)
Yoshua Bengio, Aaron C. Courville, Pascal Vincent, Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives ,(2012)
Eyal Amir, Deepak Ramachandran, Bayesian inverse reinforcement learning international joint conference on artificial intelligence. ,vol. 51, pp. 2586- 2591 ,(2007)
Volodymyr Mnih, Ioannis Antonoglou, Koray Kavukcuoglu, Daan Wierstra, Martin A. Riedmiller, Alex Graves, David Silver, Playing Atari with Deep Reinforcement Learning arXiv: Learning. ,(2013)
Ilya Sutskever, Geoffrey E. Hinton, Alex Krizhevsky, Ruslan R. Salakhutdinov, Nitish Srivastava, Improving neural networks by preventing co-adaptation of feature detectors arXiv: Neural and Evolutionary Computing. ,(2012)
Mohamad H. Hassoun, Nathan Intrator, Susan McKay, Wolfgang Christian, Fundamentals of Artificial Neural Networks Computers in Physics. ,vol. 10, pp. 137- 137 ,(1996) , 10.1063/1.4822376
Brenna D. Argall, Sonia Chernova, Manuela Veloso, Brett Browning, A survey of robot learning from demonstration Robotics and Autonomous Systems. ,vol. 57, pp. 469- 483 ,(2009) , 10.1016/J.ROBOT.2008.10.024
Pieter Abbeel, Andrew Y. Ng, Apprenticeship learning via inverse reinforcement learning Twenty-first international conference on Machine learning - ICML '04. pp. 1- 8 ,(2004) , 10.1145/1015330.1015430
Brian D. Ziebart, J. Andrew Bagnell, Anind K. Dey, Andrew Maas, Maximum entropy inverse reinforcement learning national conference on artificial intelligence. pp. 1433- 1438 ,(2008)