Abstract flow learning for web application test generation

作者: Dionny Santiago , Peter J. Clarke , Patrick Alt , Tariq M. King

DOI: 10.1145/3278186.3278194

关键词:

摘要: Achieving high software quality today involves manual analysis, test planning, documentation of testing strategy and cases, the development scripts to support automated regression testing. To keep pace with evolution, artifacts must also be frequently updated. Although automation practices help mitigate cost testing, a large gap exists between current paradigm fully Researchers practitioners are realizing potential for artificial intelligence machine learning (ML) bridge capabilities humans those machines. This paper presents an ML approach that combines language specification includes grammar can used describe flows, trainable flow generation model, in order generate tests way is trainable, reusable across different applications, generalizable new applications.

参考文章(13)
Aytuğ Onan, Classifier and feature set ensembles for web page classification Journal of Information Science. ,vol. 42, pp. 150- 165 ,(2016) , 10.1177/0165551515591724
Mark Last, Abraham Kandel, Horst Bunke, Artificial intelligence methods in software testing World Scientific. ,(2004) , 10.1142/5549
Daniel D. McCracken, Edwin D. Reilly, Backus-Naur form (BNF) Encyclopedia of Computer Science. pp. 129- 131 ,(2003)
Tanja E.J. Vos, Peter M. Kruse, Nelly Condori-Fernández, Sebastian Bauersfeld, Joachim Wegener, TESTAR International Journal of Information System Modeling and Design. ,vol. 6, pp. 46- 83 ,(2015) , 10.4018/IJISMD.2015070103
Robert J. Schalkoff, Artificial neural networks ,(1997)
Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, Antonia Bertolino, J. Jenny Li, Hong Zhu, An orchestrated survey of methodologies for automated software test case generation Journal of Systems and Software. ,vol. 86, pp. 1978- 2001 ,(2013) , 10.1016/J.JSS.2013.02.061
F.A. Gers, E. Schmidhuber, LSTM recurrent networks learn simple context-free and context-sensitive languages IEEE Transactions on Neural Networks. ,vol. 12, pp. 1333- 1340 ,(2001) , 10.1109/72.963769
Pekka Aho, Nadja Menz, Tomi Räty, Ina Schieferdecker, Automated Java GUI Modeling for Model-Based Testing Purposes 2011 Eighth International Conference on Information Technology: New Generations. pp. 268- 273 ,(2011) , 10.1109/ITNG.2011.54
A. Memon, I. Banerjee, A. Nagarajan, GUI ripping: reverse engineering of graphical user interfaces for testing working conference on reverse engineering. pp. 260- 269 ,(2003) , 10.1109/WCRE.2003.1287256
Atif M. Memon, AUTOMATED GUI REGRESSION TESTING USING AI PLANNING WORLD SCIENTIFIC. pp. 51- 99 ,(2004) , 10.1142/9789812794758_0003