High Order Algebraic Conditions for Controllability

作者: Henry Hermes

DOI: 10.1007/978-3-642-48895-5_11

关键词:

摘要: Let X,Y2,...,Ym be analytic vector fields on an analytic, n — dimensional, manifold M, and ϑ the control system $$\mathop x\limits^. = X(x) + \sum\nolimits_{i 2}^m {{u_i}(t){Y^i}(x),x(o) p \in M,(\mathop dx/dt)} $$ (1) where, unless stated otherwise, admissible is a Lebesgue measurable function u with components |ui(t)| ≤ 1. a(t,p, ϑ) will denote set of all points attainable at time t ≥ 0 by solutions corresponding to controls; TX (•)p solution . Our problem determine necessary sufficient conditions that TX(t)p ∈ int. ∀t >

参考文章(6)
Joseph Pierre Lasalle, Henry Hermes, functional analysis and time Optimal Control ,(1969)
H. Hermes, On Local and Global Controllability Siam Journal on Control. ,vol. 12, pp. 252- 261 ,(1974) , 10.1137/0312019
H Hermes, Local controllability and sufficient conditions in singular problems Journal of Differential Equations. ,vol. 20, pp. 213- 232 ,(1976) , 10.1016/0022-0396(76)90103-0
Henry Hermes, Local Controllability and Sufficient Conditions in Singular Problems. II SIAM Journal on Control and Optimization. ,vol. 14, pp. 1049- 1062 ,(1976) , 10.1137/0314065
Héctor J Sussmann, Velimir Jurdjevic, Controllability of nonlinear systems Journal of Differential Equations. ,vol. 12, pp. 95- 116 ,(1972) , 10.1016/0022-0396(72)90007-1
Tadashi NAGANO, Linear differential systems with singularities and an application to transitive Lie algebras Journal of The Mathematical Society of Japan. ,vol. 18, pp. 398- 404 ,(1966) , 10.2969/JMSJ/01840398