Functional and structural characterization of a flavoprotein monooxygenase essential for biogenesis of tryptophylquinone cofactor.

作者: Katsuyuki Tanizawa , Kazuki Okamoto , Shun’ichi Kuroda , Toshihide Okajima , Tadashi Nakai

DOI: 10.1038/S41467-021-21200-9

关键词:

摘要: Bioconversion of peptidyl amino acids into enzyme cofactors is an important post-translational modification. Here, we report a flavoprotein, essential for biosynthesis protein-derived quinone cofactor, cysteine tryptophylquinone, contained in widely distributed bacterial enzyme, quinohemoprotein amine dehydrogenase. The purified flavoprotein catalyzes the single-turnover dihydroxylation tryptophylquinone-precursor, tryptophan, protein substrate containing triple intra-peptidyl crosslinks that are pre-formed by radical S-adenosylmethionine within ternary complex these proteins. Crystal structure tryptophan dihydroxylase reveals large pocket may dock with bound flavin adenine dinucleotide situated close to precursor tryptophan. Based on enzyme-protein docking model, propose chemical reaction mechanism catalyzed monooxygenase. diversity tryptophylquinone-generating systems suggests convergent evolution tryptophan-derived different An type modification conversion acid cofactor. authors functional and structural characterization monooxygenase tryptophylquinone (CTQ)

参考文章(61)
Mieke M.E. Huijbers, Stefania Montersino, Adrie H. Westphal, Dirk Tischler, Willem J.H. van Berkel, Flavin dependent monooxygenases. Archives of Biochemistry and Biophysics. ,vol. 544, pp. 2- 17 ,(2014) , 10.1016/J.ABB.2013.12.005
Limei H. Jones, Arwen R. Pearson, Yu Tang, Carrie M. Wilmot, Victor L. Davidson, Active Site Aspartate Residues Are Critical for Tryptophan Tryptophylquinone Biogenesis in Methylamine Dehydrogenase Journal of Biological Chemistry. ,vol. 280, pp. 17392- 17396 ,(2005) , 10.1074/JBC.M500943200
Sooim Shin, Victor L. Davidson, MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis. Archives of Biochemistry and Biophysics. ,vol. 544, pp. 112- 118 ,(2014) , 10.1016/J.ABB.2013.10.004
Kazutoshi Ono, Toshihide Okajima, Minobu Tani, Shun'ichi Kuroda, Dapeng Sun, Victor L. Davidson, Katsuyuki Tanizawa, Involvement of a putative [Fe-S]-cluster-binding protein in the biogenesis of quinohemoprotein amine dehydrogenase. Journal of Biological Chemistry. ,vol. 281, pp. 13672- 13684 ,(2006) , 10.1074/JBC.M600029200
L. M. R. Jensen, R. Sanishvili, V. L. Davidson, C. M. Wilmot, In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex. Science. ,vol. 327, pp. 1392- 1394 ,(2010) , 10.1126/SCIENCE.1182492
Stefan Pohle, Christian Appelt, Mallorie Roux, Hans-Peter Fiedler, Roderich D. Süssmuth, Biosynthetic gene cluster of the non-ribosomally synthesized cyclodepsipeptide skyllamycin: deciphering unprecedented ways of unusual hydroxylation reactions. Journal of the American Chemical Society. ,vol. 133, pp. 6194- 6205 ,(2011) , 10.1021/JA108971P
Yongting Wang, Xianghui Li, Limei H. Jones, Arwen R. Pearson, Carrie M. Wilmot, Victor L. Davidson, MauG-dependent in vitro biosynthesis of tryptophan tryptophylquinone in methylamine dehydrogenase. Journal of the American Chemical Society. ,vol. 127, pp. 8258- 8259 ,(2005) , 10.1021/JA051734K
Vinayak Agarwal, Abrahim A El Gamal, Kazuya Yamanaka, Dennis Poth, Roland D Kersten, Michelle Schorn, Eric E Allen, Bradley S Moore, Biosynthesis of polybrominated aromatic organic compounds by marine bacteria Nature Chemical Biology. ,vol. 10, pp. 640- 647 ,(2014) , 10.1038/NCHEMBIO.1564
Kazuyoshi Takagi, Keiko Yamamoto, Kenji Kano, Tokuji Ikeda, New pathway of amine oxidation respiratory chain of Paracoccus denitrificans IFO 12442 European Journal of Biochemistry. ,vol. 268, pp. 470- 476 ,(2001) , 10.1046/J.1432-1033.2001.01912.X
Victor L. Davidson, Aimin Liu, Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification. Biochimica et Biophysica Acta. ,vol. 1824, pp. 1299- 1305 ,(2012) , 10.1016/J.BBAPAP.2012.01.008