Bayesian Collective Markov Random Fields for Subcellular Localization Prediction of Human Proteins

作者: Lu Zhu , Martin Ester

DOI: 10.1145/3107411.3107412

关键词:

摘要: Advanced biotechnology makes it possible to access a multitude of heterogeneous proteomic, interactomic, genomic, and functional annotation data. One challenge in computational biology is integrate these data enable automated prediction the Subcellular Localizations (SCL) human proteins. For proteins that have multiple biological roles, their correct silico assignment different SCL can be considered as an imbalanced multi-label classification problem. In this study, we developed Bayesian Collective Markov Random Fields (BCMRFs) model for multi-SCL Given set unknown corresponding protein-protein interaction (PPI) network, SCLs each protein inferred by its interacting partners. To do so, PPIs, adjacency features, perform transductive learning on re-balanced dataset. Our experimental results show spatial improves prediction, especially with few annotated instances. approach outperforms state-of-art PPI-based feature-based method

参考文章(22)
Shantanu Godbole, Sunita Sarawagi, Discriminative Methods for Multi-labeled Classification Advances in Knowledge Discovery and Data Mining. pp. 22- 30 ,(2004) , 10.1007/978-3-540-24775-3_5
Noah Lee, Andrew F. Laine, R. Theodore Smith, Bayesian Transductive Markov Random Fields for Interactive Segmentation in Retinal Disorders Springer, Berlin, Heidelberg. pp. 227- 230 ,(2009) , 10.1007/978-3-642-03891-4_61
Francisco Charte, Antonio Rivera, María José del Jesus, Francisco Herrera, Concurrence among Imbalanced Labels and Its Influence on Multilabel Resampling Algorithms hybrid artificial intelligence systems. pp. 110- 121 ,(2014) , 10.1007/978-3-319-07617-1_10
Torsten Blum, Sebastian Briesemeister, Oliver Kohlbacher, MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinformatics. ,vol. 10, pp. 274- 274 ,(2009) , 10.1186/1471-2105-10-274
Sandra E Orchard, Samuel Kerrien, Sara Abbani, Bruno Aranda, Jignesh Bhate, Shelby L Bidwell, Alan James Bridge, Leonardo Briganti, Fiona SL Brinkman, Gianni Cesareni, Andrew Chatr-Aryamontri, Emilie Chautard, Carol Chen, Marine Dumousseau, Johannes B Goll, RE Hancock, Linda I Hannick, Igor Jurisica, Jyoti Khadake, David J Lynn, Usha Mahadevan, Livia Perfetto, Arathi Raghunath, Sylvie Ricard-Blum, Bernd Roechert, Lukasz Salwinski, Volker Stümpflen, Mike David Tyers, Peter Uetz, Ioannis Xenarios, Henning Hermjakob, None, Corrigendum: Protein interaction data curation: The International Molecular Exchange (IMEx) consortium (Nature Methods (2012) 9, (345-350)) Nature Methods. ,vol. 9, pp. 626- 626 ,(2012) , 10.1038/NMETH0612-626A
KiYoung Lee, Han-Yu Chuang, Andreas Beyer, Min-Kyung Sung, Won-Ki Huh, Bonghee Lee, Trey Ideker, Protein networks markedly improve prediction of subcellular localization in multiple eukaryotic species Nucleic Acids Research. ,vol. 36, ,(2008) , 10.1093/NAR/GKN619
Alberto Calderone, Luisa Castagnoli, Gianni Cesareni, mentha: a resource for browsing integrated protein-interaction networks Nature Methods. ,vol. 10, pp. 690- 691 ,(2013) , 10.1038/NMETH.2561
Sebastian Briesemeister, J�rg Rahnenf�hrer, Oliver Kohlbacher, YLoc—an interpretable web server for predicting subcellular localization Nucleic Acids Research. ,vol. 38, pp. 497- 502 ,(2010) , 10.1093/NAR/GKQ477
Yiannis A. I. Kourmpetis, Aalt D. J. van Dijk, Marco C. A. M. Bink, Roeland C. H. J. van Ham, Cajo J. F. ter Braak, Bayesian Markov Random Field Analysis for Protein Function Prediction Based on Network Data PLoS ONE. ,vol. 5, pp. e9293- ,(2010) , 10.1371/JOURNAL.PONE.0009293