Deep learning in nano-photonics: inverse design and beyond

作者: Peter R. Wiecha , Otto L. Muskens , Arnaud Arbouet , Christian Girard

DOI: 10.1364/PRJ.415960

关键词:

摘要: … In conclusion, deep-learning-based inverse design is mainly interesting for applications which … The second part of this review is dedicated to applications of deep learning in nano-…

参考文章(166)
Arseniy I. Kuznetsov, Andrey E. Miroshnichenko, Mark L. Brongersma, Yuri S. Kivshar, Boris Luk’yanchuk, Optically resonant dielectric nanostructures Science. ,vol. 354, ,(2016) , 10.1126/SCIENCE.AAG2472
Patrice Genevet, Federico Capasso, Francesco Aieta, Mohammadreza Khorasaninejad, Robert Devlin, Recent advances in planar optics: from plasmonic to dielectric metasurfaces Optica. ,vol. 4, pp. 139- 152 ,(2017) , 10.1364/OPTICA.4.000139
Michael Unser, Kyong Hwan Jin, Emmanuel Froustey, Michael T. McCann, Deep Convolutional Neural Network for Inverse Problems in Imaging IEEE Transactions on Image Processing. ,vol. 26, pp. 4509- 4522 ,(2017) , 10.1109/TIP.2017.2713099
YoungJu Jo, Sangjin Park, JaeHwang Jung, Jonghee Yoon, Hosung Joo, Min-hyeok Kim, Suk-Jo Kang, Myung Chul Choi, Sang Yup Lee, YongKeun Park, Holographic deep learning for rapid optical screening of anthrax spores Science Advances. ,vol. 3, ,(2017) , 10.1126/SCIADV.1700606
Alexey A. Melnikov, Hendrik Poulsen Nautrup, Mario Krenn, Vedran Dunjko, Markus Tiersch, Anton Zeilinger, Hans J. Briegel, Active learning machine learns to create new quantum experiments Proceedings of the National Academy of Sciences of the United States of America. ,vol. 115, pp. 1221- 1226 ,(2018) , 10.1073/PNAS.1714936115
Jiawei Su, Danilo Vasconcellos Vargas, Kouichi Sakurai, One pixel attack for fooling deep neural networks arXiv: Learning. ,(2017) , 10.1109/TEVC.2019.2890858
Zongfu Yu, Yixuan Tan, Dianjing Liu, Erfan Khoram, Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures ACS Photonics. ,vol. 5, pp. 1365- 1369 ,(2018) , 10.1021/ACSPHOTONICS.7B01377
Thomas Baumeister, Steven L. Brunton, J. Nathan Kutz, Deep learning and model predictive control for self-tuning mode-locked lasers Journal of The Optical Society of America B-optical Physics. ,vol. 35, pp. 617- 626 ,(2018) , 10.1364/JOSAB.35.000617
Maxim Ziatdinov, Ondrej Dyck, Artem Maksov, Xufan Li, Xiahan Sang, Kai Xiao, Raymond R. Unocic, Rama Vasudevan, Stephen Jesse, Sergei V. Kalinin, Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations. ACS Nano. ,vol. 11, pp. 12742- 12752 ,(2017) , 10.1021/ACSNANO.7B07504
John Peurifoy, Yichen Shen, Li Jing, Yi Yang, Fidel Cano-Renteria, Brendan G. DeLacy, John D. Joannopoulos, Max Tegmark, Marin Soljačić, Nanophotonic particle simulation and inverse design using artificial neural networks Science Advances. ,vol. 4, ,(2018) , 10.1126/SCIADV.AAR4206