First-Order Bayes-Ball for CP-Logic

作者: Jan Struyf , Wannes Meert , Hendrik Blockeel , Nima Taghipour

DOI:

关键词:

摘要: Ecient probabilistic inference is key to the success of statistical relational learning. One issue that aects cost presence irrelevant random variables. The Bayes-ball algorithm can identify such variables in a propositional Bayesian network. This paper presents lifted version Bayes-ball, which works directly on rst-order level, and shows how this applies CP-logic inference.

参考文章(4)
Joost Vennekens, Marc Denecker, Maurice Bruynooghe, Representing Causal Information About a Probabilistic Process Logics in Artificial Intelligence. ,vol. 4160, pp. 452- 464 ,(2006) , 10.1007/11853886_37
Jan Struyf, Wannes Meert, Hendrik Blockeel, Learning Ground CP-Logic Theories by Leveraging Bayesian Network Learning Techniques Fundamenta Informaticae. ,vol. 89, pp. 131- 160 ,(2008)
Parag Singla, Pedro Domingos, Lifted first-order belief propagation national conference on artificial intelligence. pp. 1094- 1099 ,(2008)