Nitrite reduction mediated by heme models. Routes to NO and HNO

作者: Julie L. Heinecke , Chosu Khin , Jose Clayston Melo Pereira , Sebastián A. Suárez , Alexei V. Iretskii

DOI: 10.1021/JA312092X

关键词:

摘要: The water-soluble ferriheme model FeIII(TPPS) mediates oxygen atom transfer from inorganic nitrite to a phosphine (tppts), dimethyl sulfide, and the biological thiols cysteine (CysSH) glutathione (GSH). products with latter reductant are respective sulfenic acids CysS(O)H GS(O)H, although these reactive intermediates rapidly trapped by reaction excess thiol. nitrosyl complex FeII(TPPS)(NO) is dominant iron species while substrate present. However, in slightly acidic media (pH ≈ 6), system does not terminate at this very stable ferrous nitrosyl. Instead, it displays matrix of redox transformations linking spontaneous regeneration formation both N2O NO. Electrochemical sensor trapping experiments demonstrate that HNO (nitroxyl) formed, least when tppts reductant. likely predecessor N2O. A key pathway NO reduction FeII(TPPS), kinetics ir...

参考文章(79)
Katrina M. Miranda, Raymond W. Nims, Douglas D. Thomas, Michael G. Espey, Deborah Citrin, Michael D. Bartberger, Nazareno Paolocci, Jon M. Fukuto, Martin Feelisch, David A. Wink, Comparison of the reactivity of nitric oxide and nitroxyl with heme proteins. A chemical discussion of the differential biological effects of these redox related products of NOS. Journal of Inorganic Biochemistry. ,vol. 93, pp. 52- 60 ,(2003) , 10.1016/S0162-0134(02)00498-1
Julie L. Heinecke, Jun Yi, Jose Clayston Melo Pereira, George B. Richter-Addo, Peter C. Ford, Nitrite reduction by CoII and MnII substituted myoglobins: Towards understanding necessary components of Mb nitrite reductase activity Journal of Inorganic Biochemistry. ,vol. 107, pp. 47- 53 ,(2012) , 10.1016/J.JINORGBIO.2011.10.006
H. H. H. W. Schmidt, H. Hofmann, U. Schindler, Z. S. Shutenko, D. D. Cunningham, M. Feelisch, No .NO from NO synthase. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 93, pp. 14492- 14497 ,(1996) , 10.1073/PNAS.93.25.14492
Jon O. Lundberg, Eddie Weitzberg, Mark T. Gladwin, The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics Nature Reviews Drug Discovery. ,vol. 7, pp. 156- 167 ,(2008) , 10.1038/NRD2466
Al Claiborne, Holly Miller, Derek Parsonage, R. Paul Ross, Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation The FASEB Journal. ,vol. 7, pp. 1483- 1490 ,(1993) , 10.1096/FASEBJ.7.15.8262333
PETER C. FORD, LEROY E. LAVERMAN, IVAN M. LORKOVIC, REACTION MECHANISMS OF NITRIC OXIDE WITH BIOLOGICALLY RELEVANT METAL CENTERS Advances in Inorganic Chemistry. ,vol. 54, pp. 203- 257 ,(2003) , 10.1016/S0898-8838(03)54004-1
V. Shafirovich, S. V. Lymar, Nitroxyl and its anion in aqueous solutions: Spin states, protic equilibria, and reactivities toward oxygen and nitric oxide Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 7340- 7345 ,(2002) , 10.1073/PNAS.112202099
Sebastián A. Suárez, Marcelo A. Martí, Pablo M. De Biase, Darío A. Estrin, Sara E. Bari, Fabio Doctorovich, HNO trapping and assisted decomposition of nitroxyl donors by ferric hemes Polyhedron. ,vol. 26, pp. 4673- 4679 ,(2007) , 10.1016/J.POLY.2007.05.040