Strong nonuniform behaviour: A Datko type characterization

作者: Davor Dragičević

DOI: 10.1016/J.JMAA.2017.10.056

关键词:

摘要: Abstract We obtain a Datko-type characterization of several classes strong nonuniform exponential behaviour. consider separately the case contractions, expansions and dichotomies. In addition, we both discrete continuous time. As nontrivial application our work, study robustness property

参考文章(32)
Luis Barreira, Davor Dragičević, Claudia Valls, Strong and weak (Lp,Lq)-admissibility☆ Bulletin Des Sciences Mathematiques. ,vol. 138, pp. 721- 741 ,(2014) , 10.1016/J.BULSCI.2013.11.005
Luis M. Barreira, Claudia Valls, Stability of nonautonomous differential equations ,(2007)
Ju L Daleckii, Mark Grigor_evich Kre_n, None, Stability of Solutions of Differential Equations in Banach Space ,(1974)
K. V. Storozhuk, On the Rolewicz theorem for evolution operators Proceedings of the American Mathematical Society. ,vol. 135, pp. 1861- 1863 ,(2007) , 10.1090/S0002-9939-07-08697-2
Carmen Charles Chicone, Yuri Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations ,(1999)
Bogdan Sasu, Integral conditions for exponential dichotomy: A nonlinear approach Bulletin Des Sciences Mathematiques. ,vol. 134, pp. 235- 246 ,(2010) , 10.1016/J.BULSCI.2009.06.006
K. Maciej Przyłuski, Stefan Rolewicz, On stability of linear time-varying infinite-dimensional discrete-time systems Systems & Control Letters. ,vol. 4, pp. 307- 315 ,(1984) , 10.1016/S0167-6911(84)80042-0
Răzvan O. Moşincat, Ciprian Preda, Petre Preda, Averaging theorems for the large-time behavior of the solutions of nonautonomous systems Systems & Control Letters. ,vol. 60, pp. 994- 999 ,(2011) , 10.1016/J.SYSCONLE.2011.08.003
Ciprian Preda, Petre Preda, An ergodic theorem in the qualitative behavior of (non)linear semiflows Nonlinear Analysis: Theory, Methods & Applications. ,vol. 75, pp. 5393- 5400 ,(2012) , 10.1016/J.NA.2012.04.022
Richard Datko, Extending a theorem of A. M. Liapunov to Hilbert space Journal of Mathematical Analysis and Applications. ,vol. 32, pp. 610- 616 ,(1970) , 10.1016/0022-247X(70)90283-0