The Topological Mechanism of Phage λ Integrase

作者: Nancy J. Crisona , Robert L. Weinberg , Brian J. Peter , De Witt Sumners , Nicholas R. Cozzarelli

DOI: 10.1006/JMBI.1999.2771

关键词:

摘要: Bacteriophage lambda integrase (Int) is a versatile site-specific recombinase. In concert with other proteins, it mediates phage integration into and excision out of the bacterial chromosome. Int recombines intramolecular sites in inverse or direct orientation on separate DNA molecules. This wide spectrum Int-mediated reactions has, however, hindered our understanding topology recombination. By systematically analyzing reaction products using mathematical method called tangles, we deduce unified model for We find that, even absence (-) supercoiling, all are chiral, producing one two possible enantiomers each product. propose that this chirality reflects right-handed crossing within between recombination synaptic complex favors formation Holliday junction intermediates. demonstrate change linking number associated excisive inversion relaxed equally +2 -2, reflecting different substrates but same chirality. Additionally, integrative differs from only by additional plectonemic crossings complex: supercoiled substrates. The generality results indicated finding members superfamily recombinases, Flp yeast Cre P1, show intrinsic as Int.

参考文章(89)
A. Klippel, R. Kanaar, R. Kahmann, N.R. Cozzarelli, Analysis of strand exchange and DNA binding of enhancer‐independent Gin recombinase mutants. The EMBO Journal. ,vol. 12, pp. 1047- 1057 ,(1993) , 10.1002/J.1460-2075.1993.TB05746.X
David MJ Lilley, None, DNA-protein: structural interactions Oxford University Press. ,(1995)
Howard A. Nash, [15] Purification and properties of the bacteriophage lambda int protein Methods in Enzymology. ,vol. 100, pp. 210- 216 ,(1983) , 10.1016/0076-6879(83)00057-9
G.F. Hatfull, M.R. Sanderson, P.S. Freemont, P.R. Raccuia, N.D.F Grindley, T.A. Steitz, Preparation of heavy-atom derivatives using site-directed mutagenesis: Introduction of cysteine residues into γδ resolvase☆ Journal of Molecular Biology. ,vol. 208, pp. 661- 667 ,(1989) , 10.1016/0022-2836(89)90156-3
C A Pargellis, S E Nunes-Düby, L M de Vargas, A Landy, Suicide recombination substrates yield covalent lambda integrase-DNA complexes and lead to identification of the active site tyrosine. Journal of Biological Chemistry. ,vol. 263, pp. 7678- 7685 ,(1988) , 10.1016/S0021-9258(18)68552-7
Paul D. Sadowski, The Flp Recombinase of th 2-μm Plasmid of Saccharomyces cerevisiae Progress in Nucleic Acid Research and Molecular Biology. ,vol. 51, pp. 53- 91 ,(1995) , 10.1016/S0079-6603(08)60876-4
Howard A. Nash, Thomas J. Pollock, Site-specific recombination of bacteriophage lambda Journal of Molecular Biology. ,vol. 170, pp. 19- 38 ,(1983) , 10.1016/S0022-2836(83)80225-3
C A Robertson, H A Nash, Bending of the bacteriophage lambda attachment site by Escherichia coli integration host factor. Journal of Biological Chemistry. ,vol. 263, pp. 3554- 3557 ,(1988) , 10.1016/S0021-9258(18)68960-4
W.S. Dynan, J.J. Jendrisak, D.A. Hager, R.R. Burgess, Purification and characterization of wheat germ DNA topoisomerase I (nicking-closing enzyme). Journal of Biological Chemistry. ,vol. 256, pp. 5860- 5865 ,(1981) , 10.1016/S0021-9258(19)69287-2
Nancy J. Crisona, Roland Kanaar, Tania N. Gonzalez, E.Lynn Zechiedrich, Anke Klippel, Nicholas R. Cozzarelli, Processive recombination by wild-type gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange. Journal of Molecular Biology. ,vol. 243, pp. 437- 457 ,(1994) , 10.1006/JMBI.1994.1671