Box Splines and Applications

作者: M. Dæhlen , T. Lyche

DOI: 10.1007/978-3-642-76404-2_3

关键词:

摘要: We give an elementary introduction to box spline methods for the representation of surfaces. First, we derive basic properties splines starting with univariate cardinal case. Proofs most results are included. proceed a detailed presentation refinement and evaluation splines. discuss shape preserving properties, construction non-rectangular surfaces, applications surface modelling problems related imbedding surfaces within tensor product surface.

参考文章(41)
Morten Dæhlen, On the evaluation of box splines Mathematical methods in computer aided geometric design. pp. 167- 179 ,(1989) , 10.1016/B978-0-12-460515-2.50016-0
Tom Lyche, Discrete B-Splines and Conversion Problems Springer, Dordrecht. pp. 117- 134 ,(1990) , 10.1007/978-94-009-2017-0_4
Kurt Jetter, A Short Survey on cardinal interpolation by Box splines. Topics in Multivariate Approximation. pp. 125- 139 ,(1987) , 10.1016/B978-0-12-174585-1.50014-2
Charles K. Chui, Florencio I. Utreras, Larry L. Schumaker, Topics in Multivariate Approximation ,(1987)
I. J. Schoenberg, Cardinal Spline Interpolation ,(1987)
Wolfgang Dahmen, Charles Micchelli, On the local linear independence of translates of a box spline Studia Mathematica. ,vol. 82, pp. 243- 263 ,(1985) , 10.4064/SM-82-3-243-263
Morten Dæhlen, Vibeke Skytt, Modelling Non-Rectangular Patches using Box Splines conference on mathematics of surfaces. pp. 287- 300 ,(1988)