Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings

作者: S. Lessmann , B. Baesens , C. Mues , S. Pietsch

DOI: 10.1109/TSE.2008.35

关键词:

摘要: … 3.1 Data Set Characteristics The data used in this study … Our view is that simple classifiers like Naive Bayes or decision … each arc represents a correlation or dependency. Thus, learning …

参考文章(66)
Andres Orrego, Justin DiStefano, Tim Menzies, Assessing Predictors of Software Defects ,(2004)
Jelber Sayyad Shirabad, Tim Menzies, The \{PROMISE\} Repository of Software Engineering Databases. ,(2005)
Taghi M. Khoshgoftaar, Naeem Seliya, Analogy-Based Practical Classification Rules for Software Quality Estimation Empirical Software Engineering. ,vol. 8, pp. 325- 350 ,(2003) , 10.1023/A:1025316301168
Maurice H. Halstead, Elements of software science Elsevier. ,(1977)
Niclas Ohlsson, Ann Christin Eriksson, Mary Helander, Early Risk-Management by Identification of Fault-prone Modules Empirical Software Engineering. ,vol. 2, pp. 166- 173 ,(1997) , 10.1023/A:1009757419320
Lan Guo, Yan Ma, B. Cukic, H. Singh, Robust prediction of fault-proneness by random forests international symposium on software reliability engineering. pp. 417- 428 ,(2004) , 10.1109/ISSRE.2004.35
Christopher M. Bishop, Neural networks for pattern recognition ,(1995)
James Franklin, The elements of statistical learning : data mining, inference,and prediction The Mathematical Intelligencer. ,vol. 27, pp. 83- 85 ,(2005) , 10.1007/BF02985802
Janez Demšar, Statistical Comparisons of Classifiers over Multiple Data Sets Journal of Machine Learning Research. ,vol. 7, pp. 1- 30 ,(2006)
J.A.K. Suykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers Neural Processing Letters. ,vol. 9, pp. 293- 300 ,(1999) , 10.1023/A:1018628609742