Crystalline and magnetic structures, magnetization, heat capacity, and anisotropic magnetostriction effect in a yttrium-chromium oxide

作者: Yinghao Zhu , Ying Fu , Bao Tu , Tao Li , Jun Miao

DOI: 10.1103/PHYSREVMATERIALS.4.094409

关键词:

摘要: We have studied a nearly stoichiometric insulating ${\mathrm{Y}}_{0.97(2)}{\mathrm{Cr}}_{0.98(2)}{\mathrm{O}}_{3.00(2)}$ single crystal by performing measurements of magnetization, heat capacity, and neutron diffraction. Albeit that the $\mathrm{Y}\mathrm{Cr}{\mathrm{O}}_{3}$ compound behaves like soft ferromagnet with coersive force $\ensuremath{\sim}0.05$ T, there exist strong antiferromagnetic (AFM) interactions between ${\mathrm{Cr}}^{3+}$ spins due to strongly negative paramagnetic Curie-Weiss temperature, i.e., $\ensuremath{-}433.2$(6) K. The coexistence ferromagnetism antiferromagnetism may indicate canted AFM structure. phase transition occurs at ${T}_{\text{N}}=141.5(1)\phantom{\rule{0.16em}{0ex}}\mathrm{K}$, which increases ${T}_{\text{N}}$(5 T) = 144.5(1) K 5 T. Within accuracy present neutron-diffraction studies, we determined G-type structure propagation vector k (1 1 0) spin directions along crystallographic $c$ axis orthorhombic space group $Pnma$ below ${T}_{\text{N}}$. At 12 K, refined moment size is 2.45(6) ${\ensuremath{\mu}}_{\text{B}}, \ensuremath{\sim}82%$ theoretical saturation value $3\phantom{\rule{0.28em}{0ex}}{\ensuremath{\mu}}_{\text{B}}$. are probably two-dimensional Ising within reciprocal scattering plane. Below ${T}_{\text{N}}$, lattice configuration ($a$, $b$ , $V$ ) deviates largely downward from Gr\"uneisen law, displaying an anisotropic magnetostriction effect magnetoelastic effect. Especially, sample contraction upon cooling enhanced temperature. There evidence suggest actual crystalline symmetry lower than currently assumed one. Additionally, compared ${t}_{2\text{g}}\phantom{\rule{4pt}{0ex}}\mathrm{Y}\mathrm{Cr}{\mathrm{O}}_{3}$ ${e}_{\text{g}}\phantom{\rule{4pt}{0ex}}{\mathrm{La}}_{7/8}{\mathrm{Sr}}_{1/8}{\mathrm{MnO}}_{3}$ crystals for further understanding reason possible lowering.

参考文章(58)
Orlando Auciello, James F. Scott, Ramamoorthy Ramesh, The Physics of Ferroelectric Memories Physics Today. ,vol. 51, pp. 22- 27 ,(1998) , 10.1063/1.882324
Bas B. Van Aken, Thomas T.M. Palstra, Alessio Filippetti, Nicola A. Spaldin, The origin of ferroelectricity in magnetoelectric YMnO3. Nature Materials. ,vol. 3, pp. 164- 170 ,(2004) , 10.1038/NMAT1080
Hong Jian Zhao, Wei Ren, Yurong Yang, Jorge Íñiguez, Xiang Ming Chen, L. Bellaiche, Near room-temperature multiferroic materials with tunable ferromagnetic and electrical properties Nature Communications. ,vol. 5, pp. 4021- ,(2014) , 10.1038/NCOMMS5021
Alexandra S. Gibbs, Kevin S. Knight, Philip Lightfoot, High-temperature phase transitions of hexagonal YMnO 3 Physical Review B. ,vol. 83, pp. 094111- ,(2011) , 10.1103/PHYSREVB.83.094111
M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S.-W. Cheong, O. P. Vajk, J. W. Lynn, Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3 Physical Review Letters. ,vol. 95, pp. 087206- ,(2005) , 10.1103/PHYSREVLETT.95.087206
Maxim Mostovoy, Ferroelectricity in spiral magnets Physical Review Letters. ,vol. 96, pp. 067601- ,(2006) , 10.1103/PHYSREVLETT.96.067601
John T. Looby, Lewis Katz, YTTRIUM CHROMIUM OXIDE, A NEW COMPOUND OF THE PEROWSKITE TYPE Journal of the American Chemical Society. ,vol. 76, pp. 6029- 6030 ,(1954) , 10.1021/JA01652A047
M. Ardit, G. Cruciani, M. Dondi, M. Merlini, P. Bouvier, Elastic properties of perovskite YCrO 3 up to 60 GPa Physical Review B. ,vol. 82, pp. 064109- ,(2010) , 10.1103/PHYSREVB.82.064109