Tool Steel Heat Treatment Optimization Using Neural Network Modeling

作者: Bojan Podgornik , Igor Belič , Vojteh Leskovšek , Matjaz Godec

DOI: 10.1007/S11661-016-3723-0

关键词:

摘要: … tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-…

参考文章(52)
L.A. Dobrzański, J. Trzaska, A.D. Dobrzańska-Danikiewicz, Use of Neural Networks and Artificial Intelligence Tools for Modeling, Characterization, and Forecasting in Material Engineering Reference Module in Materials Science and Materials Engineering#R##N#Comprehensive Materials Processing. ,vol. 2, pp. 161- 198 ,(2014) , 10.1016/B978-0-08-096532-1.00215-6
Jing-Yuan Li, Yu-Lai Chen, Jian-Hua Huo, Mechanism of improvement on strength and toughness of H13 die steel by nitrogen Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 640, pp. 16- 23 ,(2015) , 10.1016/J.MSEA.2015.05.006
Osman Palavar, Dursun Özyürek, Ali Kalyon, Artificial neural network prediction of aging effects on the wear behavior of IN706 superalloy Materials & Design. ,vol. 82, pp. 164- 172 ,(2015) , 10.1016/J.MATDES.2015.05.055
N.S. Reddy, B.B. Panigrahi, Choi Myeong Ho, Jeoung Han Kim, Chong Soo Lee, Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys Computational Materials Science. ,vol. 107, pp. 175- 183 ,(2015) , 10.1016/J.COMMATSCI.2015.05.026
Caner Şimşir, Cemil Hakan Gür, A FEM based framework for simulation of thermal treatments: Application to steel quenching Computational Materials Science. ,vol. 44, pp. 588- 600 ,(2008) , 10.1016/J.COMMATSCI.2008.04.021
Bojan Podgornik, Vojteh Leskovšek, Microstructure and Origin of Hot-Work Tool Steel Fracture Toughness Deviation Metallurgical and Materials Transactions A. ,vol. 44, pp. 5694- 5702 ,(2013) , 10.1007/S11661-013-1921-6
Hao-jie Xie, Xiao-chun Wu, Yong-an Min, Influence of Chemical Composition on Phase Transformation Temperature and Thermal Expansion Coefficient of Hot Work Die Steel Journal of Iron and Steel Research International. ,vol. 15, pp. 56- 61 ,(2008) , 10.1016/S1006-706X(08)60267-8
S. Malinov, W. Sha, Application of artificial neural networks for modelling correlations in titanium alloys Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 365, pp. 202- 211 ,(2004) , 10.1016/J.MSEA.2003.09.029
S. Krajewski, J. Nowacki, Dual-phase steels microstructure and properties consideration based on artificial intelligence techniques Archives of Civil and Mechanical Engineering. ,vol. 14, pp. 278- 286 ,(2014) , 10.1016/J.ACME.2013.10.002