General formalism for inhomogeneous random graphs.

作者: Bo Söderberg

DOI: 10.1103/PHYSREVE.66.066121

关键词:

摘要: We present and investigate an extension of the classical random graph to a general class inhomogeneous models, where vertices come in different types, probability realizing edge depends on types its terminal vertices. This approach provides framework for analysis large models. The generic phase structure is derived using generating function techniques, relations other classes models are pointed out.

参考文章(9)
Michael Molloy, Bruce Reed, A critical point for random graphs with a given degree sequence Random Structures and Algorithms. ,vol. 6, pp. 161- 180 ,(1995) , 10.1002/RSA.3240060204
Duncan S. Callaway, John E. Hopcroft, Jon M. Kleinberg, M. E. J. Newman, Steven H. Strogatz, Are randomly grown graphs really random Physical Review E. ,vol. 64, pp. 041902- 041902 ,(2001) , 10.1103/PHYSREVE.64.041902
Tatyana S. Turova, Dynamical random graphs with memory. Physical Review E. ,vol. 65, pp. 066102- 066102 ,(2002) , 10.1103/PHYSREVE.65.066102
Réka Albert, Albert-László Barabási, Topology of Evolving Networks: Local Events and Universality Physical Review Letters. ,vol. 85, pp. 5234- 5237 ,(2000) , 10.1103/PHYSREVLETT.85.5234
MICHAEL MOLLOY, BRUCE REED, The Size of the Giant Component of a Random Graph with a Given Degree Sequence Combinatorics, Probability & Computing. ,vol. 7, pp. 295- 305 ,(1998) , 10.1017/S0963548398003526
M. E. J. Newman, S. H. Strogatz, D. J. Watts, Random graphs with arbitrary degree distributions and their applications. Physical Review E. ,vol. 64, pp. 026118- ,(2001) , 10.1103/PHYSREVE.64.026118
GR Grimmett, Random Graphs 2 Wiley, NY. ,(1992)
Béla Bollobás, Random Graphs ,(1985)
Tomasz Luczak, Andrzej Rucinski, Svante Janson, Random Graphs ,(2000)