Denoising autoencoders for Non-Intrusive Load Monitoring: Improvements and comparative evaluation

作者: Roberto Bonfigli , Andrea Felicetti , Emanuele Principi , Marco Fagiani , Stefano Squartini

DOI: 10.1016/J.ENBUILD.2017.11.054

关键词:

摘要: … proposes a NILM algorithm based on the Deep Neural Networks. In particular, the NILM task is … In this section, the HMM appliance model and the training procedure are firstly described. …

参考文章(49)
Ilya Sutskever, Geoffrey Hinton, James Martens, George Dahl, On the importance of initialization and momentum in deep learning international conference on machine learning. pp. 1139- 1147 ,(2013)
Mark Weal, Oliver Parson, Alex Rogers, Siddhartha Ghosh, Non-intrusive load monitoring using prior models of general appliance types national conference on artificial intelligence. pp. 356- 362 ,(2012)
William Knottenbelt, Jack Kelly, Neural NILM: Deep Neural Networks Applied to Energy Disaggregation arXiv: Neural and Evolutionary Computing. ,(2015) , 10.1145/2821650.2821672
Zoubin Ghahramani, Michael Jordan, None, Factorial Hidden Markov Models neural information processing systems. ,vol. 29, pp. 472- 478 ,(1995) , 10.1023/A:1007425814087
Shoko Araki, Tomoki Hayashi, Marc Delcroix, Masakiyo Fujimoto, Kazuya Takeda, Tomohiro Nakatani, Exploring multi-channel features for denoising-autoencoder-based speech enhancement international conference on acoustics, speech, and signal processing. pp. 116- 120 ,(2015) , 10.1109/ICASSP.2015.7177943
Roberto Bonfigli, Stefano Squartini, Marco Fagiani, Francesco Piazza, Unsupervised algorithms for non-intrusive load monitoring: An up-to-date overview international conference on environment and electrical engineering. pp. 1175- 1180 ,(2015) , 10.1109/EEEIC.2015.7165334
Geoffrey E. Hinton, Vinod Nair, Rectified Linear Units Improve Restricted Boltzmann Machines international conference on machine learning. pp. 807- 814 ,(2010)
William Knottenbelt, Haimonti Dutta, Oliver Parson, Mani Srivastava, Nipun Batra, Jack Kelly, Amarjeet Singh, Alex Rogers, NILMTK v0.2: a non-intrusive load monitoring toolkit for large scale data sets: demo abstract Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings. pp. 182- 183 ,(2014) , 10.1145/2674061.2675024
Charles Sutton, Mingjun Zhong, Nigel Goddard, Latent Bayesian melding for integrating individual and population models arXiv: Machine Learning. ,(2015)
J. A. Hartigan, M. A. Wong, A K-Means Clustering Algorithm Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 28, pp. 100- 108 ,(1979) , 10.2307/2346830