Semi-supervised learning of sparse linear models in mass spectral imaging

作者: Fabian Ojeda , Marco Signoretto , Raf Van de Plas , Etienne Waelkens , Bart De Moor

DOI: 10.1007/978-3-642-16001-1_28

关键词:

摘要: We present an approach to learn predictive models and perform variable selection by incorporating structural information from Mass Spectral Imaging (MSI) data. explore the use of a smooth quadratic penalty model natural ordering physical variables, that is mass-to-charge (m/z) ratios. Thereby, estimated parameters for nearby variables are enforced smoothly vary. Similarly, overcome lack labeled data we spatial proximity among spectra means connectivity graph over set predicted labels. usefulness this in mouse brain MSI set.

参考文章(18)
Fan R K Chung, Spectral Graph Theory ,(1996)
Markus Stoeckli, Pierre Chaurand, Dennis E. Hallahan, Richard M. Caprioli, Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nature Medicine. ,vol. 7, pp. 493- 496 ,(2001) , 10.1038/86573
Liam A. McDonnell, Ron M.A. Heeren, Imaging mass spectrometry Mass Spectrometry Reviews. ,vol. 26, pp. 606- 643 ,(2007) , 10.1002/MAS.20124
Michael Hanselmann, Ullrich Köthe, Marc Kirchner, Bernhard Y. Renard, Erika R. Amstalden, Kristine Glunde, Ron M. A. Heeren, Fred A. Hamprecht, Toward digital staining using imaging mass spectrometry and random forests. Journal of Proteome Research. ,vol. 8, pp. 3558- 3567 ,(2009) , 10.1021/PR900253Y
Gregor McCombie, Dieter Staab, Markus Stoeckli, Richard Knochenmuss, Spatial and spectral correlations in MALDI mass spectrometry images by clustering and multivariate analysis. Analytical Chemistry. ,vol. 77, pp. 6118- 6124 ,(2005) , 10.1021/AC051081Q
Raf Van de Plas, Fabian Ojeda, Maarten Dewil, Ludo Van Den Bosch, Bart De Moor, Etienne Waelkens, Prospective exploration of biochemical tissue composition via imaging mass spectrometry guided by principal component analysis. pacific symposium on biocomputing. pp. 458- 469 ,(2006) , 10.1142/9789812772435_0043
Robert Tibshirani, Trevor Hastie, Berwin A. Turlach, Bradley Efron, Jean Michel Loubes, Jean Michel Loubes, Hemant Ishwaran, Robert A. Stine, Keith Knight, Sanford Weisberg, Saharon Rosset, Saharon Rosset, Iain Johnstone, Pascal Massart, Pascal Massart, David Madigan, J. I. Zhu, Greg Ridgeway, Greg Ridgeway, Least angle regression Annals of Statistics. ,vol. 32, pp. 407- 499 ,(2004) , 10.1214/009053604000000067
Jan Luts, Fabian Ojeda, Raf Van de Plas, Bart De Moor, Sabine Van Huffel, Johan A.K. Suykens, A tutorial on support vector machine-based methods for classification problems in chemometrics. Analytica Chimica Acta. ,vol. 665, pp. 129- 145 ,(2010) , 10.1016/J.ACA.2010.03.030
Vikas Sindhwani, Partha Niyogi, Mikhail Belkin, Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples Journal of Machine Learning Research. ,vol. 7, pp. 2399- 2434 ,(2006)