A finite genus solution of the Hirota equation via integrable symplectic maps

作者: Cewen Cao , Guangyao Zhang

DOI: 10.1088/1751-8113/45/9/095203

关键词:

摘要: Two integrable symplectic maps are constructed through nonlinearization of the discrete linear spectral problems in Lax pair Hirota equation, i.e. lattice sine-Gordon equation. As an application, these used to calculate finite genus solutions equation and closely related potential MKdV special H3 model Adler–Bobenko–Suris list.

参考文章(27)
David Mumford, Tata Lectures on Theta I ,(1982)
Joseph Harris, Phillip A Griffiths, Principles of Algebraic Geometry ,(1978)
Olivier Babelon, Michel Talon, Denis Bernard, Introduction to classical integrable systems ,(2003)
Alexander Bobenko, Ulrich Pinkall, Discrete surfaces with constant negative Gaussian curvature and the Hirota equation Journal of Differential Geometry. ,vol. 43, pp. 527- 611 ,(1996) , 10.4310/JDG/1214458324
Symmetries of Discrete Systems arXiv: Exactly Solvable and Integrable Systems. ,(2003) , 10.1007/B94662
Morikazu Toda, Theory of nonlinear lattices ,(1981)
Frank Nijhoff, Hans Capel, The Discrete Korteweg—de Vries Equation Acta Applicandae Mathematicae. ,vol. 39, pp. 133- 158 ,(1995) , 10.1007/BF00994631
Ryogo Hirota, Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation Journal of the Physical Society of Japan. ,vol. 43, pp. 2079- 2086 ,(1977) , 10.1143/JPSJ.43.2079