Towards identification of Wiener systems with the least amount of a priori information: IIR cases

作者: Er-Wei Bai , Jr. Reyland , John

DOI: 10.1016/J.AUTOMATICA.2008.11.020

关键词:

摘要: In this paper, we investigate what constitutes the least amount of a priori information on nonlinearity so that linear part is identifiable in non-Gaussian input case. Under white noise input, three types are considered: quadrant information, point and monotonic information. all cases, identifiability has been established, corresponding nonparametric identification algorithms developed along with their convergence proofs.

参考文章(20)
M. Abe, M. Kawamata, Comparison of the convergence of IIR evolutionary digital filters and other adaptive digital filters on a multiple-peak surface asilomar conference on signals, systems and computers. ,vol. 2, pp. 1674- 1678 ,(1997) , 10.1109/ACSSC.1997.679187
David Westwick, Michel Verhaegen, Identifying MIMO Wiener systems using subspace model identification methods Signal Processing. ,vol. 52, pp. 235- 258 ,(1996) , 10.1016/0165-1684(96)00056-4
Jozef Vörös, Parameter identification of Wiener systems with discontinuous nonlinearities Systems & Control Letters. ,vol. 44, pp. 363- 372 ,(2001) , 10.1016/S0167-6911(01)00155-4
E. A. Nadaraya, Nonparametric Estimation of Probability Densities and Regression Curves Journal of the American Statistical Association. ,vol. 85, pp. 598- ,(1989) , 10.1007/978-94-009-2583-0
Charles R. Johnson, Tomasz Szulc, Further lower bounds for the smallest singular value Linear Algebra and its Applications. ,vol. 272, pp. 169- 179 ,(1998) , 10.1016/S0024-3795(97)00330-3