Madelung representation of damped parametric quantum oscillator and exactly solvable Schrödinger-Burgers equations

作者: Şirin A. Büyükaşık , Oktay K. Pashaev

DOI: 10.1063/1.3524505

关键词:

摘要: We construct a Madelung fluid model with time variable parameters as dissipative quantum and linearize it in terms of Schrodinger equation time-dependent parameters. It allows us to find exact solutions the nonlinear system corresponding classical linear ordinary differential frequency damping. For complex velocity field, takes form Schrodinger–Burgers equation, for which we obtain using Cole–Hopf transformation. In particular, give results systems related Caldirola–Kanai-type harmonic oscillator. Collapse wave function models possible implications cosmology are discussed.

参考文章(16)
Nonlinear equations in physics and mathematics NATO Advanced Science Institutes (ASI) Series C: Mathematical and Physical Sciences. ,(1978) , 10.1007/978-94-009-9891-9
Şirin A. Büyükaşık, Oktay K. Pashaev, Esra Tigrak-Ulaş, Exactly solvable quantum Sturm-Liouville problems Journal of Mathematical Physics. ,vol. 50, pp. 072102- 072102 ,(2009) , 10.1063/1.3155370
James Wei, Edward Norman, Lie Algebraic Solution of Linear Differential Equations Journal of Mathematical Physics. ,vol. 4, pp. 575- 581 ,(1963) , 10.1063/1.1703993
E. Madelung, Quantentheorie in hydrodynamischer Form European Physical Journal. ,vol. 40, pp. 322- 326 ,(1927) , 10.1007/BF01400372
Eberhard Hopf, The partial differential equation ut + uux = μxx Communications on Pure and Applied Mathematics. ,vol. 3, pp. 201- 230 ,(1950) , 10.1002/CPA.3160030302
V. V. Dodonov, V. I. Man'ko, Coherent states and the resonance of a quantum damped oscillator Physical Review A. ,vol. 20, pp. 550- 560 ,(1979) , 10.1103/PHYSREVA.20.550
O. K. Pashaev, Relativistic Burgers and nonlinear SchrÖdinger equations Theoretical and Mathematical Physics. ,vol. 160, pp. 1022- 1030 ,(2009) , 10.1007/S11232-009-0093-4
G. Dattoli, S. Solimeno, A. Torre, Algebraic time-ordering techniques and harmonic oscillator with time-dependent frequency. Physical Review A. ,vol. 34, pp. 2646- 2653 ,(1986) , 10.1103/PHYSREVA.34.2646