An information theoretic approach for non-rigid image registration using voxel class probabilities

作者: Emiliano D’Agostino , Frederik Maes , Dirk Vandermeulen , Paul Suetens

DOI: 10.1016/J.MEDIA.2005.03.004

关键词:

摘要: We propose two information theoretic similarity measures that allow to incorporate tissue class in non-rigid image registration. The first measure assumes probabilities have been assigned each of the images be registered by prior segmentation both them. One is then non-rigidly deformed match other such fuzzy overlap corresponding voxel object labels becomes similar ideal case whereby probability maps are identical. Image assessed during registration divergence between and actual joint distributions images. A second proposed applies a available for only one images, instance an atlas matched study guide thereof. Intensities minimizing conditional entropy intensities given image. derive analytic expressions gradient with respect individual displacements force field drives process, which regularized viscous fluid model. performance class-based evaluated context inter-subject atlas-based MR brain compared maximization mutual using intensity information. Our results demonstrate incorporation significantly improves classes after matching. methods here open new perspectives integrating single output used other.

参考文章(19)
F. Maes, D. Vandermeulen, P. Suetens, Medical image registration using mutual information Proceedings of the IEEE. ,vol. 91, pp. 1699- 1722 ,(2003) , 10.1109/JPROC.2003.817864
Daniel Rueckert, Luke I Sonoda, Carmel Hayes, Derek LG Hill, Martin O Leach, David J Hawkes, Nonrigid registration using free-form deformations: application to breast MR images IEEE Transactions on Medical Imaging. ,vol. 18, pp. 712- 721 ,(1999) , 10.1109/42.796284
K. Van Leemput, F. Maes, D. Vandermeulen, P. Suetens, Automated model-based tissue classification of MR images of the brain IEEE Transactions on Medical Imaging. ,vol. 18, pp. 897- 908 ,(1999) , 10.1109/42.811270
T. Rohlfing, R. Brandt, C.R. Maurer, R. Menzel, Bee brains, B-splines and computational democracy: generating an average shape atlas Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001). pp. 187- 194 ,(2001) , 10.1109/MMBIA.2001.991733
K. Van Leemput, F. Maes, D. Vandermeulen, P. Suetens, Automated model-based bias field correction of MR images of the brain IEEE Transactions on Medical Imaging. ,vol. 18, pp. 885- 896 ,(1999) , 10.1109/42.811268
K. Van Leemput, F. Maes, D. Vandermeulen, A. Colchester, P. Suetens, Automated segmentation of multiple sclerosis lesions by model outlier detection IEEE Transactions on Medical Imaging. ,vol. 20, pp. 677- 688 ,(2001) , 10.1109/42.938237
Gerardo Hermosillo, Christophe Chefd'Hotel, Olivier Faugeras, Variational Methods for Multimodal Image Matching International Journal of Computer Vision. ,vol. 50, pp. 329- 343 ,(2002) , 10.1023/A:1020830525823
E. D’Agostino, J. Modersitzki, F. Maes, D. Vandermeulen, B. Fischer, P. Suetens, Free-Form Registration Using Mutual Information and Curvature Regularization workshop on biomedical image registration. pp. 11- 20 ,(2003) , 10.1007/978-3-540-39701-4_2
Michael E. Leventon, W. Eric L. Grimson, Multi-modal Volume Registration Using Joint Intensity Distributions medical image computing and computer-assisted intervention. pp. 1057- 1066 ,(1998) , 10.1007/BFB0056295
Emiliano D'Agostino, Frederik Maes, Dirk Vandermeulen, Paul Suetens, A viscous fluid model for multimodal non-rigid image registration using mutual information Medical Image Analysis. ,vol. 7, pp. 565- 575 ,(2003) , 10.1016/S1361-8415(03)00039-2