Increasing Kolmogorov Complexity

作者: Nikolai K. Vereshchagin , Ilan Newman , Lance Fortnow , Harry Buhrman

DOI:

关键词:

摘要: How much do we have to change a string increase its Kolmogorov complexity? We show that can the complexity of any non-random length n by flipping $O(\sqrt{n})$ bits and some strings require $\Omega(\sqrt{n})$ bit flips. For given m, also give bounds for increasing m bits.

参考文章(3)
Gyula Katona, The Hamming-sphere has minimum boundary Akadémiai Kiadó. ,(1975)
L.H. Harper, Optimal numberings and isoperimetric problems on graphs Journal of Combinatorial Theory, Series A. ,vol. 1, pp. 385- 393 ,(1966) , 10.1016/S0021-9800(66)80059-5
Paul Vitányi, Ming Li, An introduction to Kolmogorov complexity and its applications Graduate texts in computer science. pp. 1- 637 ,(1997)