Limit theorems for the ratio of the Kaplan-Meier estimator or the Altshuler estimator to the true survival function

作者: Zheng Zukang

DOI: 10.1007/BF02582030

关键词:

摘要: LetX1,X2, ...,Xn be a sequence of nonnegative independent random variables with common continuous distribution functionF. LetY1,Y2, ...,Yn another functionG, also {Xi}. We can only observeZi=min(Xi,Yi), and\(\delta _i = I_{(X_i \leqslant Y_i )} \). LetH=1−(1−F)(1−G) the function ofZ. In this paper, limit theorems for ratio Kaplan-Meier estimator\(\hat S_n (t)\) or Altshuler estimator\(\tilde to true survival functionS(t) are given. It is shown that (1)P(δ(n)=1 i.o.)=0 ifF(τH) 1 where δ(n) corresponding indicator of\(T Z_{(n)} \mathop {\max }\limits_{1 i n} Z_i ,\tau _H \inf \{ t:H(t) 1\} ;(2)\mathop {\sup }\limits_{t T_n } \left| {\frac{{\hat (t)}}{{S(t)}} - 1} \right|,\mathop {\frac{{S(t)}}{{\hat (t)}} {\frac{{\tilde \right|\) and\(\mathop have same order\(O\left( {n^{\frac{{ + \alpha }}{2}} (\log n)^{\frac{{1 \beta \log n)^{ \frac{\gamma }{2}} \right)\) a.s., {Tn} constants such 1−H(Tn)=n−α(logn)β(log logn)γ.

参考文章(18)
J. Kiefer, Iterated Logarithm Analogues for Sample Quantiles When P n ↓0 University of California Press. pp. 227- 244 ,(1972) , 10.1007/978-1-4613-8505-9_43
H. Robbins, D. Siegmund, On the law of the iterated logarithm for maxima and minima Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 3: Probability Theory. pp. 51- 70 ,(1972)
E. L. Kaplan, Paul Meier, Nonparametric Estimation from Incomplete Observations Springer Series in Statistics. ,vol. 53, pp. 319- 337 ,(1992) , 10.1007/978-1-4612-4380-9_25
Jon A. Wellner, Limit theorems for the ratio of the empirical distribution function to the true distribution function Probability Theory and Related Fields. ,vol. 45, pp. 73- 88 ,(1978) , 10.1007/BF00635964
Tze Leung Lai, On Chernoff-Savage Statistics and Sequential Rank Tests Annals of Statistics. ,vol. 3, pp. 825- 845 ,(1975) , 10.1214/AOS/1176343185
Galen R. Shorack, Jon A. Wellner, Linear Bounds on the Empirical Distribution Function Annals of Probability. ,vol. 6, pp. 349- 353 ,(1978) , 10.1214/AOP/1176995582
Shaw-Hwa Lo, Kesar Singh, The product-limit estimator and the bootstrap: Some asymptotic representations Probability Theory and Related Fields. ,vol. 71, pp. 455- 465 ,(1986) , 10.1007/BF01000216
Bernard Altshuler, Theory for the measurement of competing risks in animal experiments Mathematical Biosciences. ,vol. 6, pp. 1- 11 ,(1970) , 10.1016/0025-5564(70)90052-0