Centralization: a new method for the normalization of gene expression data.

作者: A. Zien , T. Aigner , R. Zimmer , T. Lengauer

DOI: 10.1093/BIOINFORMATICS/17.SUPPL_1.S323

关键词:

摘要: Microarrays measure values that are approximately proportional to the numbers of copies different mRNA molecules in samples. Due technical difficulties, constant proportionality between measured intensities and per cell is unknown may vary for arrays. Usually, data normalized (i.e., array-wise multiplied by appropriate factors) order compensate this effect enable informative comparisons experiments. Centralization a new two-step method computation such normalization factors both biologically better motivated more robust than standard approaches. First, each pair arrays quotient constants estimated. Second, from resulting matrix pairwise quotients an optimally consistent scaling samples computed.

参考文章(12)
Jörg Zolotukhin, Igor Lange, Application of Analysis of Variance Schemes to Expression Data. german conference on bioinformatics. pp. 159- 166 ,(2000)
Huong L Vu, Serge Troubetzkoy, Huan H Nguyen, Michael W Russell, Jiri Mestecky, A method for quantification of absolute amounts of nucleic acids by (RT)-PCR and a new mathematical model for data analysis. Nucleic Acids Research. ,vol. 28, ,(2000) , 10.1093/NAR/28.7.E18
C. Li, W. H. Wong, Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection Proceedings of the National Academy of Sciences of the United States of America. ,vol. 98, pp. 31- 36 ,(2001) , 10.1073/PNAS.98.1.31
Mei-Ling Ting Lee, Frank C Kuo, GA Whitmore, Jeffrey Sklar, Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations Proceedings of the National Academy of Sciences of the United States of America. ,vol. 97, pp. 9834- 9839 ,(2000) , 10.1073/PNAS.97.18.9834
S. M. Goldsworthy, T. L. Goldsworthy, C. S. Sprankle, B. E. Butterworth, Variation in expression of genes used for normalization of Northern blots after induction of cell proliferation. Cell Proliferation. ,vol. 26, pp. 511- 517 ,(1993) , 10.1111/J.1365-2184.1993.TB00029.X
LD Ke, Z Chen, WKA Yung, A reliability test of standard-based quantitative PCR: exogenous vs endogenous standards. Molecular and Cellular Probes. ,vol. 14, pp. 127- 135 ,(2000) , 10.1006/MCPR.2000.0288
M. Kathleen Kerr, Mitchell Martin, Gary A. Churchill, Analysis of Variance for Gene Expression Microarray Data Journal of Computational Biology. ,vol. 7, pp. 819- 837 ,(2000) , 10.1089/10665270050514954
T. Bei barth, K. Fellenberg, B. Brors, R. Arribas-Prat, J. M. Boer, N. C. Hauser, M. Scheideler, J. D. Hoheisel, G. Schutz, A. Poustka, M. Vingron, Processing and quality control of DNA array hybridization data. Bioinformatics. ,vol. 16, pp. 1014- 1022 ,(2000) , 10.1093/BIOINFORMATICS/16.11.1014
Toshihide Suzuki, Paul J. Higgins, Dana R. Crawford, Control selection for RNA quantitation. BioTechniques. ,vol. 29, pp. 332- 337 ,(2000) , 10.2144/00292RV02
Yidong Chen, Ratio-based decisions and the quantitative analysis of cDNA micro-array images Journal of Biomedical Optics. ,vol. 2, pp. 364- 374 ,(1999) , 10.1117/12.281504