Vascularization of engineered musculoskeletal tissues

作者: J. Lim , M. Chong , Y. Liu , A. Khademhosseini , S.H. Teoh

DOI: 10.1016/B978-1-78242-301-0.00011-2

关键词:

摘要: Musculoskeletal tissues possess extensive vasculature, which should be recapitulated in tissue-engineering approaches. In this chapter, we review the literature pertaining to vascularization of engineered musculoskeletal tissues, and organize them along central tenets tissue-engineering: scaffolds, cells, growth factors, bioreactors. The appropriate selection design biomaterials terms structure, stiffness, porosity influence their ability direct formation vasculature. Coculture systems addition factors have been shown improve prevascularized structures. To mimicry physiology, dynamic cultures, provided via shear or mechanical stimulation, also developed demonstrated as beneficial. Despite early success engineering vascularized more work can done current strategies by systematically targeting various tissue-engineering.

参考文章(145)
J A Simon, J L Ricci, P E Di Cesare, Bioresorbable fracture fixation in orthopedics: a comprehensive review. Part II. Clinical studies. American journal of orthopedics. ,vol. 26, pp. 754- 762 ,(1997)
Pedro Esbrit, Sergio Portal-Núñez, Daniel Lozano, Role of angiogenesis on bone formation. Histology and Histopathology. ,vol. 27, pp. 559- 566 ,(2012) , 10.14670/HH-27.559
Peter D. Wagner, Skeletal muscle angiogenesis Advances in Experimental Medicine and Biology. ,vol. 502, pp. 21- 38 ,(2001) , 10.1007/978-1-4757-3401-0_4
JT Street, B Lenehan, K DeSchrijver, JH Wang, QD Wu, HP Redmond, None, Hypoxia regulates the paracrine coupling of angiogenesis and bone formation European Journal of Orthopaedic Surgery and Traumatology. ,vol. 15, pp. 214- 225 ,(2005) , 10.1007/S00590-005-0232-Z
Mario Peichev, Afzal J. Naiyer, Daniel Pereira, Zhenping Zhu, William J. Lane, Mathew Williams, Mehmet C. Oz, Daniel J. Hicklin, Larry Witte, Malcolm A. S. Moore, Shahin Rafii, Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors Blood. ,vol. 95, pp. 952- 958 ,(2000) , 10.1182/BLOOD.V95.3.952.003K27_952_958
Serge Ostrovidov, Azadeh Seidi, Samad Ahadian, Murugan Ramalingam, Ali Khademhosseini, Micro- and Nanoengineering Approaches to Developing Gradient Biomaterials Suitable for Interface Tissue Engineering Wiley-IEEE Press. pp. 52- 79 ,(2013) , 10.1002/9781118574775.CH3
Hojae Bae, Hunghao Chu, Faramarz Edalat, Jae Min Cha, Shilpa Sant, Aditya Kashyap, Amir F. Ahari, Cheong Hoon Kwon, Jason W. Nichol, Sam Manoucheri, Behnam Zamanian, Yadong Wang, Ali Khademhosseini, Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications Journal of Tissue Engineering and Regenerative Medicine. ,vol. 8, pp. 1- 14 ,(2014) , 10.1002/TERM.1494
Andrea S. Gobin, Jennifer L. West, Cell migration through defined, synthetic extracellular matrix analogues The FASEB Journal. ,vol. 16, pp. 751- 753 ,(2002) , 10.1096/FJ.01-0759FJE
A.A. Kocher, M.D. Schuster, M.J. Szabolcs, S. Takuma, D. Burkhoff, J. Wang, S. Homma, N.M. Edwards, S. Itescu, Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function Nature Medicine. ,vol. 7, pp. 430- 436 ,(2001) , 10.1038/86498
Peter Carmeliet, Yuval Dor, Jean-Marc Herbert, Dai Fukumura, Koen Brusselmans, Mieke Dewerchin, Michal Neeman, Françoise Bono, Rinat Abramovitch, Patrick Maxwell, Cameron J. Koch, Peter Ratcliffe, Lieve Moons, Rakesh K. Jain, Désiré Collen, Eli Keshet, Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. ,vol. 394, pp. 485- 490 ,(1998) , 10.1038/28867