Data Mining - Generation and Visualisation of Decision Trees

作者: M. Doczekalski , H. Kwaśnicka

DOI:

关键词:

摘要: A computer system presented in the paper is developed as a data mining tool - it allows to use large databases source for process of decision tree generation and visualisation. Designed (DTB&V Decision Tree Builder Visualiser 1 ) able perform preprocessing, trees followed by their post processing DTB&V was tested using number commonly used such tasks.

参考文章(21)
Heikki Mannila, A. Inkeri Verkamo, Hannu Toivonen, Efficient algorithms for discovering association rules knowledge discovery and data mining. pp. 181- 192 ,(1994)
Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu T. T. Toivonen, Kimmo H t nen, Pruning and grouping of discovered association rules ,(1995)
Xiaolin Wu, Ian H. Witten, A FAST K-MEANS TYPE CLUSTERING ALGORITHM University of Calgary. ,(1985) , 10.11575/PRISM/31135
Jorma Rissanen, Rakesh Agrawal, Manish Mehta, MDL-based decision tree pruning knowledge discovery and data mining. pp. 216- 221 ,(1995)
John C. Shafer, Rakesh Agrawal, Manish Mehta, SPRINT: A Scalable Parallel Classifier for Data Mining very large data bases. pp. 544- 555 ,(1996)
Tomasz Imielinski, Arun N. Swami, Balakrishna R. Iyer, Rakesh Agrawal, Sakti P. Ghosh, An Interval Classifier for Database Mining Applications very large data bases. pp. 560- 573 ,(1992)
Ramakrishnan Srikant, Rakesh Agrawal, Fast Algorithms for Mining Association Rules in Large Databases very large data bases. pp. 487- 499 ,(1994)
Ramakrishnan Srikant, Rakesh Agrawal, Mining Generalized Association Rules very large data bases. pp. 407- 419 ,(1995)
Ramakrishnan Srikant, Quoc Vu, Rakesh Agrawal, Mining association rules with item constraints knowledge discovery and data mining. pp. 67- 73 ,(1997)
Manish Mehta, Rakesh Agrawal, Jorma Rissanen, SLIQ: A fast scalable classifier for data mining Advances in Database Technology — EDBT '96. pp. 18- 32 ,(1996) , 10.1007/BFB0014141