Biorthonormal systems, partial fractions, and Hermite interpolation

作者: Luis Verde-Star

DOI: 10.1016/0196-8858(89)90019-5

关键词:

摘要: Using some properties of dual bases in finite dimensional vector spaces we obtain elementary linear algebra proofs the partial fractions decomposition and Hermite interpolation theorems. We also an explicit expression for inverse a confluent Vandermonde matrix, algebraic version residue theorem rational functions, several pairs change basis matrices on Space polynomials.

参考文章(7)
Katsumi Nomizu, Fundamentals of linear algebra ,(1966)
Peter Henrici, Henry C. Thacher, Applied and Computational Complex Analysis ,(1974)
J.F. Mahoney, B.D. Sivazlian, Partial fractions expansion: a review of computational methodology and efficiency Journal of Computational and Applied Mathematics. ,vol. 9, pp. 247- 269 ,(1983) , 10.1016/0377-0427(83)90018-3
D. Hazony, J. Riley, Evaluating residues and coefficients of high order poles Ire Transactions on Automatic Control. ,vol. 4, pp. 132- 136 ,(1959) , 10.1109/TAC.1959.1104863
Luis Verde-Star, Inverses of generalized Vandermonde matrices Journal of Mathematical Analysis and Applications. ,vol. 131, pp. 341- 353 ,(1988) , 10.1016/0022-247X(88)90210-7
Philip J. Davis, Interpolation and approximation ,(2014)
Kenneth O. May, Garrett Birkhoff, Saunders MacLane, A Survey of Modern Algebra Econometrica. ,vol. 22, pp. 391- ,(1954) , 10.2307/1907363