An existence result for a nonconvex variational problem via regularity

作者: Irene Fonseca , Nicola Fusco , Paolo Marcellini

DOI: 10.1051/COCV:2002004

关键词:

摘要: Local Lipschitz continuity of minimizers certain integrals the Calculus Variations is obtained when integrands are convex with respect to gradient variable, but not necessarily uniformly . In turn, these regularity results entail existence variational problems non-homogeneous nonconvex variable. The x -dependence, explicitly appearing in integrands, adds significant technical difficulties proof.

参考文章(27)
M. A. Sychev, Characterization of homogeneous scalar variational problems solvable for all boundary data Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 130, pp. 611- 631 ,(2000) , 10.1017/S0308210500000330
Arrigo Cellina, On minima of a functional of the gradient: necessary conditions Nonlinear Analysis-theory Methods & Applications. ,vol. 20, pp. 337- 345 ,(1993) , 10.1016/0362-546X(93)90137-H
Irene Fonseca, Gilles Francfort, 3D-2D asymptotic analysis of an optimal design problem for thin films Crelle's Journal. ,vol. 1998, pp. 173- 202 ,(1998) , 10.1515/CRLL.1998.505.173
William P. Ziemer, Weakly Differentiable Functions Graduate Texts in Mathematics. ,(1989) , 10.1007/978-1-4612-1015-3
Gero Friesecke, A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 124, pp. 437- 471 ,(1994) , 10.1017/S0308210500028730
L. C. Evans, R. F. Gariepy, Blowup, compactness and partial regularity in the calculus of variations Indiana University Mathematics Journal. ,vol. 36, pp. 361- 371 ,(1987)
B. Dacorogna, P. Marcellini, Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre Comptes rendus de l'Académie des sciences. Série 1, Mathématique. ,vol. 323, pp. 599- 602 ,(1996)
Bernard Dacorogna, Paolo Marcellini, Implicit partial differential equations ,(1999)
P. Marcellini, B. Dacorogna, Théorèmes d" existence dans les cas scalaire et vectoriel pour les équations de Hamilton-Jacobi Comptes rendus de l'Académie des sciences. Série 1, Mathématique. ,vol. 322, pp. 237- 240 ,(1996)
Bernard Dacorogna, Paolo Marcellini, Attainment of minima and implicit partial differential equations Ric. Mat.. pp. 311- 346 ,(1999)