Accurate Parameter Estimation of a Hydro-Turbine Regulation System Using Adaptive Fuzzy Particle Swarm Optimization

作者: Dong Liu , Zhihuai Xiao , Hongtao Li , Dong Liu , Xiao Hu

DOI: 10.3390/EN12203903

关键词:

摘要: Parameter estimation is an important part in the modeling of a hydro-turbine regulation system (HTRS), and results determine final accuracy model. A normally non-minimum phase with strong nonlinearity time-varying parameters. For parameter such nonlinear system, heuristic algorithms are more advantageous than traditional mathematical methods. However, most heuristics based their improved versions not adaptive, which means that appropriate parameters algorithm need to be manually found keep performing optimally solving similar problems. To solve this problem, adaptive fuzzy particle swarm optimization (AFPSO) dynamically tunes according model error proposed applied HTRS. The simulation studies show AFPSO contributes lower higher identification compared some algorithms. Importantly, it avoids possible deterioration performance caused by inappropriate selection.

参考文章(49)
Jieming Ma, Ka Lok Man, Sheng-Uei Guan, T. O. Ting, Prudence W. H. Wong, Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm International Journal of Energy Research. ,vol. 40, pp. 343- 352 ,(2016) , 10.1002/ER.3359
Agoston E. Eiben, Jim Smith, From evolutionary computation to the evolution of things Nature. ,vol. 521, pp. 476- 482 ,(2015) , 10.1038/NATURE14544
Shiwei Yu, Yi-Ming Wei, Ke Wang, A PSO–GA optimal model to estimate primary energy demand of China Energy Policy. ,vol. 42, pp. 329- 340 ,(2012) , 10.1016/J.ENPOL.2011.11.090
Leandro dos Santos Coelho, A quantum particle swarm optimizer with chaotic mutation operator Chaos, Solitons & Fractals. ,vol. 37, pp. 1409- 1418 ,(2008) , 10.1016/J.CHAOS.2006.10.028
Giorgos Karafotias, Mark Hoogendoorn, A. E. Eiben, Parameter Control in Evolutionary Algorithms: Trends and Challenges IEEE Transactions on Evolutionary Computation. ,vol. 19, pp. 167- 187 ,(2015) , 10.1109/TEVC.2014.2308294
Chaoshun Li, Jianzhong Zhou, Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm Energy Conversion and Management. ,vol. 52, pp. 374- 381 ,(2011) , 10.1016/J.ENCONMAN.2010.07.012
Wei-Der Chang, Shun-Peng Shih, PID controller design of nonlinear systems using an improved particle swarm optimization approach Communications in Nonlinear Science and Numerical Simulation. ,vol. 15, pp. 3632- 3639 ,(2010) , 10.1016/J.CNSNS.2010.01.005
Seung-Mok Lee, Hanguen Kim, Hyun Myung, Xin Yao, Cooperative Coevolutionary Algorithm-Based Model Predictive Control Guaranteeing Stability of Multirobot Formation IEEE Transactions on Control Systems and Technology. ,vol. 23, pp. 37- 51 ,(2015) , 10.1109/TCST.2014.2312324
Zhihuan Chen, Xiaohui Yuan, Hao Tian, Bin Ji, Improved gravitational search algorithm for parameter identification of water turbine regulation system Energy Conversion and Management. ,vol. 78, pp. 306- 315 ,(2014) , 10.1016/J.ENCONMAN.2013.10.060