The complexity of quantum spin systems on a two-dimensional square lattice

作者: Barbara M. Terhal , Roberto Oliveira

DOI: 10.5555/2016985.2016987

关键词:

摘要: The problem 2-LOCAL HAMILTONIAN has been shown to be complete for the quantumcomputational class QMA [1]. In this paper we show that important problemremains QMA-complete when interactions of 2-local Hamiltonian are betweenqubits on a two-dimensional (2-D) square lattice. Our results partially derived withnovel perturbation gadgets employ mediator qubits which allow us manipulatek-local interactions. As side result, obtain quantum adiabatic computationusing restricted 2-D lattice is equivalent circuitmodel computation. method also shows how any stabilizerspace associated with k-local stabilizer (for constant k) can generated as anapproximate ground-space Hamiltonian.

参考文章(16)
Andris Ambainis, Oded Regev, An Elementary Proof of the Quantum Adiabatic Theorem arXiv: Quantum Physics. ,(2004)
Birger Bergersen, Michael Plischke, Equilibrium statistical physics ,(1988)
B. Nachtergaele, Quantum Spin Systems Encyclopedia of Mathematical Physics. pp. 295- 301 ,(2004) , 10.1016/B0-12-512666-2/00005-5
Dorit Aharonov, Tomer Naveh, Quantum NP - A Survey arXiv: Quantum Physics. ,(2002)
Oded Regev, Julia Kempe, 3-local Hamitonian is QMA-complete Quantum Information & Computation. ,vol. 3, pp. 258- 264 ,(2003) , 10.26421/QIC3.3-7
Dominik Janzing, Thomas Beth, Pawel Wocjan, "Identity check" is QMA-complete arXiv: Quantum Physics. ,(2003)
H.A Kramers, L'interaction Entre les Atomes Magnétogènes dans un Cristal Paramagnétique Physica D: Nonlinear Phenomena. ,vol. 1, pp. 182- 192 ,(1934) , 10.1016/S0031-8914(34)90023-9
F Barahona, On the computational complexity of Ising spin glass models Journal of Physics A. ,vol. 15, pp. 3241- 3253 ,(1982) , 10.1088/0305-4470/15/10/028
Robert Raussendorf, Hans J. Briegel, A One-Way Quantum Computer Physical Review Letters. ,vol. 86, pp. 5188- 5191 ,(2001) , 10.1103/PHYSREVLETT.86.5188
Daniel Gottesman, Dorit Aharonov, Sandy Irani, Julia Kempe, The power of quantum systems on a line arXiv: Quantum Physics. ,(2007) , 10.1007/S00220-008-0710-3