A Feynman path integral-like method for deriving the four dimensionality of spacetime from first principles

作者: L Marek-Crnjac , None

DOI: 10.1016/J.CHAOS.2008.09.014

关键词:

摘要: Abstract Using a Feynman path integral-like summing procedure we can establish two exact statistical averages for the topological and Hausdorff dimension of fractal-Cantorian spacetime. By equating expressions find to be 4 + ϕ3 4, respectively, where ϕ = ( 5 - 1 ) / 2 .

参考文章(6)
Saleh Al-Athel, None, On the dimension of micro space-time Chaos, Solitons & Fractals. ,vol. 7, pp. 873- 875 ,(1996) , 10.1016/0960-0779(96)00022-7
Jan Ambjørn, Jerzy Jurkiewicz, Renate Loll, The Self-Organizing Quantum Universe Scientific American. ,vol. 299, pp. 42- 49 ,(2008) , 10.1038/SCIENTIFICAMERICAN0708-42
M.S. El Naschie, On numbers, probability and dimensions Chaos, Solitons & Fractals. ,vol. 7, pp. 955- 959 ,(1996) , 10.1016/0960-0779(96)00036-7
L Marek-Crnjac, None, A short history of fractal-Cantorian space-time Chaos Solitons & Fractals. ,vol. 41, pp. 2697- 2705 ,(2009) , 10.1016/J.CHAOS.2008.10.007
Mohamed Saladin Elnaschie, The Feynman Path Integral and Ε-Infinity from the Two-slit Gedanken Experiment International Journal of Nonlinear Sciences and Numerical Simulation. ,vol. 6, pp. 335- 342 ,(2005) , 10.1515/IJNSNS.2005.6.4.335