An Elementary Proof of Eigenvalue Preservation for the Co-rotational Beris-Edwards System

作者: Andres Contreras , Xiang Xu , Wujun Zhang

DOI: 10.1007/S00332-018-9503-9

关键词:

摘要: … We study the corotational Beris-Edwards system modeling nematic liquid crystals and revisit the eigenvalue preservation property discussed in Wu et al. (Arch Rational Mech Anal, 2018…

参考文章(27)
Francisco Guillén-González, María Ángeles Rodríguez-Bellido, Weak solutions for an initial–boundary Q-tensor problem related to liquid crystals Nonlinear Analysis-theory Methods & Applications. ,vol. 112, pp. 84- 104 ,(2015) , 10.1016/J.NA.2014.09.011
Patrick J. Ryan, Homogeneity and some curvature conditions for hypersurfaces Tohoku Mathematical Journal. ,vol. 21, pp. 363- 388 ,(1969) , 10.2748/TMJ/1178242949
Helmut Abels, Georg Dolzmann, YuNing Liu, Well-Posedness of a Fully Coupled Navier--Stokes/Q-tensor System with Inhomogeneous Boundary Data Siam Journal on Mathematical Analysis. ,vol. 46, pp. 3050- 3077 ,(2014) , 10.1137/130945405
Marius Paicu, Arghir Zarnescu, Energy Dissipation and Regularity for a Coupled Navier–Stokes and Q-Tensor System Archive for Rational Mechanics and Analysis. ,vol. 203, pp. 45- 67 ,(2012) , 10.1007/S00205-011-0443-X
Eduard Feireisl, Giulio Schimperna, Elisabetta Rocca, Arghir Zarnescu, Nonisothermal nematic liquid crystal flows with the Ball–Majumdar free energy Annali di Matematica Pura ed Applicata. ,vol. 194, pp. 1269- 1299 ,(2015) , 10.1007/S10231-014-0419-1
Francisco Guillén-González, MarÍa Ángeles RodrÍguez-Bellido, Weak Time Regularity and Uniqueness for a $Q$-Tensor Model Siam Journal on Mathematical Analysis. ,vol. 46, pp. 3540- 3567 ,(2014) , 10.1137/13095015X
Katsumi Nomizu, Characteristic roots and vectors of a diifferentiable family of symmetric matrices Linear & Multilinear Algebra. ,vol. 1, pp. 159- 162 ,(1973) , 10.1080/03081087308817014
P. G. de Gennes, Richard Alben, The physics of liquid crystals ,(1974)