On the local fractional derivative of everywhere non-differentiable continuous functions on intervals

作者: Cheng-shi Liu

DOI: 10.1016/J.CNSNS.2016.05.029

关键词:

摘要: We first prove that for a continuous function f(x) defined on an open interval, the Kolvankar-Gangal’s (or equivalently Chen-Yan-Zhang’s) local fractional derivative f(α)(x) is not continuous, and then it impossible KG exists everywhere interval satisfies ≠ 0 in same time. In addition, we give criterion of nonexistence non-differentiable functions. Furthermore, construct two simple nowhere differentiable functions (0, 1) they have no derivatives everywhere.

参考文章(18)
Udita N. Katugampola, A New Fractional Derivative with Classical Properties arXiv: Classical Analysis and ODEs. ,(2014)
Vasily E. Tarasov, Leibniz Rule and Fractional Derivatives of Power Functions Journal of Computational and Nonlinear Dynamics. ,vol. 11, pp. 031014- ,(2016) , 10.1115/1.4031364
Fayçal Ben Adda, Jacky Cresson, Corrigendum to “About non-differentiable functions” [J. Math. Anal. Appl. 263 (2001) 721–737] Journal of Mathematical Analysis and Applications. ,vol. 408, pp. 409- 413 ,(2013) , 10.1016/J.JMAA.2013.06.027
Kiran M. Kolwankar, Anil D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions Chaos. ,vol. 6, pp. 505- 513 ,(1996) , 10.1063/1.166197
Yan Chen, Ying Yan, Kewei Zhang, On the local fractional derivative Journal of Mathematical Analysis and Applications. ,vol. 362, pp. 17- 33 ,(2010) , 10.1016/J.JMAA.2009.08.014
G. H. Hardy, Weierstrass’s non-differentiable function Transactions of the American Mathematical Society. ,vol. 17, pp. 301- 325 ,(1916) , 10.1090/S0002-9947-1916-1501044-1
Fayçal Ben Adda, Jacky Cresson, About Non-differentiable Functions Journal of Mathematical Analysis and Applications. ,vol. 263, pp. 721- 737 ,(2001) , 10.1006/JMAA.2001.7656
Manuel D. Ortigueira, J.A. Tenreiro Machado, What is a fractional derivative Journal of Computational Physics. ,vol. 293, pp. 4- 13 ,(2015) , 10.1016/J.JCP.2014.07.019