作者: Madjid Khichane , Patrick Albert , Christine Solnon
DOI: 10.1007/978-3-642-11169-3_9
关键词:
摘要: We introduce two reactive frameworks for dynamically adapting some parameters of an Ant Colony Optimization (ACO) algorithm. Both use ACO to adapt parameters: pheromone trails are associated with parameter values; these represent the learnt desirability using values and used set in a probabilistic way. The differ granularity learning. experimentally evaluate on algorithm solving constraint satisfaction problems.