An ACO-Based Reactive Framework for Ant Colony Optimization: First Experiments on Constraint Satisfaction Problems

作者: Madjid Khichane , Patrick Albert , Christine Solnon

DOI: 10.1007/978-3-642-11169-3_9

关键词:

摘要: We introduce two reactive frameworks for dynamically adapting some parameters of an Ant Colony Optimization (ACO) algorithm. Both use ACO to adapt parameters: pheromone trails are associated with parameter values; these represent the learnt desirability using values and used set in a probabilistic way. The differ granularity learning. experimentally evaluate on algorithm solving constraint satisfaction problems.

参考文章(15)
M. Birattari, T. Stutzle, M. Dorigo, Ant Colony Optimization ,(2004)
Francesco Mondada, Mauro Birattari, Thomas Stützle, Christian Blum, Luca Maria Gambardella, Marco Dorigo, Ant Colony Optimization and Swarm Intelligence ,(2008)
Thomas Stützle, Holger H. Hoos, – Ant System Future Generation Computer Systems. ,vol. 16, pp. 889- 914 ,(2000) , 10.1016/S0167-739X(00)00043-1
R. Battiti, M. Protasi, Reactive Local Search for the Maximum Clique Problem1 Algorithmica. ,vol. 29, pp. 610- 637 ,(2001) , 10.1007/S004530010074
Christine Solnon, Combining two Pheromone Structures for Solving the Car Sequencing Problem with Ant Colony Optimization European Journal of Operational Research. ,vol. 191, pp. 1043- 1055 ,(2008) , 10.1016/J.EJOR.2007.04.037
Christine Solnon, Serge Fenet, A study of ACO capabilities for solving the maximum clique problem Journal of Heuristics. ,vol. 12, pp. 155- 180 ,(2006) , 10.1007/S10732-006-4295-8
Steven Minton, Mark D. Johnston, Andrew B. Philips, Philip Laird, Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems Artificial Intelligence. ,vol. 58, pp. 161- 205 ,(1992) , 10.1016/0004-3702(92)90007-K
M. Dorigo, L.M. Gambardella, Ant colony system: a cooperative learning approach to the traveling salesman problem IEEE Transactions on Evolutionary Computation. ,vol. 1, pp. 53- 66 ,(1997) , 10.1109/4235.585892
C. Solnon, Ants can solve constraint satisfaction problems IEEE Transactions on Evolutionary Computation. ,vol. 6, pp. 347- 357 ,(2002) , 10.1109/TEVC.2002.802449