The structural basis for the allosteric regulation of ribonucleotide reductase.

作者: Md. Faiz Ahmad , Chris G. Dealwis

DOI: 10.1016/B978-0-12-386931-9.00014-3

关键词:

摘要: Ribonucleotide reductases (RRs) catalyze a crucial step of de novo DNA synthesis by converting ribonucleoside diphosphates to deoxyribonucleoside diphosphates. Tight control the dNTP pool is essential for cellular homeostasis. The activity enzyme tightly regulated at S-phase allosteric regulation. Recent structural studies our group and others provided molecular basis understanding how RR recognizes substrates, it interacts with chemotherapeutic agents, its regulators ATP dATP. This review discusses regulation substrate recognition RR, particularly discovery that subunit oligomerization an important prerequisite in inhibition.

参考文章(72)
E. Colleen Moore, Peter Reichard, ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. VI. THE CYTIDINE DIPHOSPHATE REDUCTASE SYSTEM FROM NOVIKOFF HEPATOMA. Journal of Biological Chemistry. ,vol. 239, pp. 3453- 3456 ,(1964) , 10.1016/S0021-9258(18)97744-6
R Eliasson, E Pontis, X Sun, P Reichard, Allosteric control of the substrate specificity of the anaerobic ribonucleotide reductase from Escherichia coli. Journal of Biological Chemistry. ,vol. 269, pp. 26052- 26057 ,(1994) , 10.1016/S0021-9258(18)47158-X
Rainer Koob, Raymond L. Blakley, Johannes Griffig, Mechanisms of inhibition of DNA synthesis by 2-chlorodeoxyadenosine in human lymphoblastic cells. Cancer Research. ,vol. 49, pp. 6923- 6928 ,(1989)
R. W. Brockman, W. B. Parker, L. M. Rose, Chi-Hsiung Chang, A. T. Shortnacy, L. Lee Bennett, S. C. Shaddix, E. L. White, J. A. Montgomery, J. A. Secrist, Effects of 2-Chloro-9-(2-deoxy-2-fluoro-β-d-arabinofuranosyl)adenine on K562 Cellular Metabolism and the Inhibition of Human Ribonucleotide Reductase and DNA Polymerases by Its 5′-Triphosphate Cancer Research. ,vol. 51, pp. 2386- 2394 ,(1991)
P Huang, S Chubb, W Plunkett, Termination of DNA synthesis by 9-beta-D-arabinofuranosyl-2-fluoroadenine. A mechanism for cytotoxicity. Journal of Biological Chemistry. ,vol. 265, pp. 16617- 16625 ,(1990) , 10.1016/S0021-9258(17)46267-3
H. Xu, C. Faber, T. Uchiki, J. W. Fairman, J. Racca, C. Dealwis, Structures of eukaryotic ribonucleotide reductase I provide insights into dNTP regulation. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 103, pp. 4022- 4027 ,(2006) , 10.1073/PNAS.0600443103
H. Xu, C. Faber, T. Uchiki, J. Racca, C. Dealwis, Structures of eukaryotic ribonucleotide reductase I define gemcitabine diphosphate binding and subunit assembly Proceedings of the National Academy of Sciences of the United States of America. ,vol. 103, pp. 4028- 4033 ,(2006) , 10.1073/PNAS.0600440103
Dinesh Kumar, Jörgen Viberg, Anna Karin Nilsson, Andrei Chabes, None, Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint Nucleic Acids Research. ,vol. 38, pp. 3975- 3983 ,(2010) , 10.1093/NAR/GKQ128
Peter Reichard, Rolf Eliasson, Rolf Ingemarson, Lars Thelander, Cross-talk between the Allosteric Effector-binding Sites in Mouse Ribonucleotide Reductase Journal of Biological Chemistry. ,vol. 275, pp. 33021- 33026 ,(2000) , 10.1074/JBC.M005337200
P Reichard, From RNA to DNA, why so many ribonucleotide reductases ? Science. ,vol. 260, pp. 1773- 1777 ,(1993) , 10.1126/SCIENCE.8511586