Modeling the environmental dependence of pit growth using neural network approaches

作者: M.K. Cavanaugh , R.G. Buchheit , N. Birbilis

DOI: 10.1016/J.CORSCI.2010.05.027

关键词:

摘要: … used to quantitatively determine the amount of pitting corrosion. The Multi-Region Analysis … was predicted by neural network models shown here. Since the deepest pits are not always …

参考文章(54)
Lebrocq Laurence Francis, Sutton Herbert, ANTI-CORROSION METHOD ,(1939)
Kemal Nis¸ancioğlu, Electrochemical Behavior of Aluminum‐Base Intermetallics Containing Iron Journal of The Electrochemical Society. ,vol. 137, pp. 69- 77 ,(1990) , 10.1149/1.2086441
Christopher M. Bishop, Neural networks for pattern recognition ,(1995)
K.K. Sankaran, R. Perez, K.V. Jata, Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: modeling and experimental studies Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 297, pp. 223- 229 ,(2001) , 10.1016/S0921-5093(00)01216-8
M. Urquidi-Macdonald, D.D. Macdonald, PERFORMANCE COMPARISON BETWEEN A STATISTICAL MODEL, A DETERMINISTIC MODEL,AND AN ARTIFICIAL NEURAL NETWORK MODEL FOR PREDICTING DAMAGE FROM PITTING C ORROSION Journal of Research of the National Institute of Standards and Technology. ,vol. 99, pp. 495- 504 ,(1994) , 10.6028/JRES.099.047
P.S Pao, S.J Gill, C.R Feng, On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy Scripta Materialia. ,vol. 43, pp. 391- 396 ,(2000) , 10.1016/S1359-6462(00)00434-6