Machine learning multi-classifiers for peptide classification

作者: Loris Nanni , Alessandra Lumini

DOI: 10.1007/S00521-007-0170-2

关键词:

摘要: In this paper, we study the performance improvement that it is possible to obtain combining classifiers based on different notions (each trained using a physicochemical property of amino-acids). This multi-classifier has been tested in three problems: HIV-protease; recognition T-cell epitopes; predictive vaccinology. We propose combines classifier approaches problem as two-class pattern and method one-class classifier. Several combined with “sum rule” enables us an over best results previously published literature.

参考文章(40)
Gabriele Zenobi, Pádraig Cunningham, Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error european conference on machine learning. pp. 576- 587 ,(2001) , 10.1007/3-540-44795-4_49
LEI HUANG, YANG DAI, A SUPPORT VECTOR MACHINE APPROACH FOR PREDICTION OF T CELL EPITOPES asia-pacific bioinformatics conference. pp. 319- 328 ,(2005) , 10.1142/9781860947322_0032
Loris Nanni, Alessandra Lumini, Letters: Ensemble of Parzen window classifiers for on-line signature verification Neurocomputing. ,vol. 68, pp. 217- 224 ,(2005) , 10.1016/J.NEUCOM.2005.05.004
Loris Nanni, Alessandra Lumini, Letters: A reliable method for HIV-1 protease cleavage site prediction Neurocomputing. ,vol. 69, pp. 838- 841 ,(2006) , 10.1016/J.NEUCOM.2005.09.004
Vladimir Brusic, Nikolai Petrovsky, Guanglan Zhang, Vladimir B Bajic, Prediction of promiscuous peptides that bind HLA class I molecules. Immunology and Cell Biology. ,vol. 80, pp. 280- 285 ,(2002) , 10.1046/J.1440-1711.2002.01088.X
S. Kawashima, H. Ogata, M. Kanehisa, AAindex: Amino Acid Index Database Nucleic Acids Research. ,vol. 27, pp. 368- 369 ,(1999) , 10.1093/NAR/27.1.368