Statistical Inference Procedures for Bivariate Archimedean Copulas

作者: Christian Genest , Louis-Paul Rivest , None

DOI: 10.1080/01621459.1993.10476372

关键词:

摘要: A bivariate distribution function H (x, y) with marginals F (x) and G (y) is said to be generated by an Archimedean copula if it can be expressed in the form H (x, y)= ϕ–1 [ϕ {F (x)}+ ϕ {G (y)}] for some convex, decreasing function ϕ defined on [0, 1] in such a way that ϕ (1)= 0. Many well-known systems of bivariate distributions belong to this class, including those of Gumbel, Ali-Mikhail-Haq-Thélot, Clayton, Frank, and Hougaard. Frailty models also fall under that general prescription. This article examines the problem of selecting an …

参考文章(32)
B. Schweizer, A. Sklar, Probabilistic metric spaces ,(1983)
CHRISTIAN GENEST, Frank's family of bivariate distributions Biometrika. ,vol. 74, pp. 549- 555 ,(1987) , 10.1093/BIOMET/74.3.549
Philippe CapéRAÀ, Christian Genest, Concepts de dépendance et ordres stochastiques pour des lois bidimensionnelles Canadian Journal of Statistics. ,vol. 18, pp. 315- 326 ,(1990) , 10.2307/3315837
JONATHAN A. TAWN, Bivariate extreme value theory: Models and estimation Biometrika. ,vol. 75, pp. 397- 415 ,(1988) , 10.1093/BIOMET/75.3.397
David Oakes, Bivariate survival models induced by frailties Journal of the American Statistical Association. ,vol. 84, pp. 487- 493 ,(1989) , 10.1080/01621459.1989.10478795
Roger B. Nelsen, Properties of a one-parameter family of bivariate distributions with specified marginals Communications in Statistics-theory and Methods. ,vol. 15, pp. 3277- 3285 ,(1986) , 10.1080/03610928608829309
Mark E Johnson, Dennis R Cook, Generalized Burr-Pareto-Logistic distributions with applications to a uranium exploration data set Technometrics. ,vol. 28, pp. 123- 131 ,(1986) , 10.2307/1270448
Albert W. Marshall, Ingram Olkin, Families of Multivariate Distributions Journal of the American Statistical Association. ,vol. 83, pp. 834- 841 ,(1988) , 10.1080/01621459.1988.10478671
George Kimeldori, Allan Sampson, Uniform representations of bivariate distributions Communications in Statistics-theory and Methods. ,vol. 4, pp. 617- 627 ,(1975) , 10.1080/03610928308827274