The geometric structure of some systems of demand equations

作者: Thomas Russell , Frank Farris

DOI: 10.1016/0304-4068(93)90020-L

关键词:

摘要: Abstract Consider the income compensation function Y = φ ( p , y ; 0 ) where ∈ R are levels and n prices. By holding fixed we may interpret this as an -parameter transformation of to . With interpretation show that a system demand functions is additively separable in prices if only Lie group on Sophus Lie's 1888 classification such groups into three fundamental types provides alternative derivation both rank 3 condition Gorman functional forms found by him.

参考文章(14)
Nicolas Bourbaki, Lie groups and Lie algebras ,(1998)
Arthur Lewbel, A DEMAND SYSTEM RANK THEOREM Econometrica. ,vol. 57, pp. 701- 705 ,(1989)
Arthur Lewbel, Fractional demand systems Journal of Econometrics. ,vol. 36, pp. 311- 337 ,(1987) , 10.1016/0304-4076(87)90005-4
Lionel McKenzie, Demand Theory Without a Utility Index The Review of Economic Studies. ,vol. 24, pp. 185- 189 ,(1957) , 10.2307/2296067
Sophus Lie, Theorie der Transformationsgruppen Mathematische Annalen. ,vol. 16, pp. 441- 528 ,(1880) , 10.1007/BF01446218
Arthur Lewbel, Characterizing Some Gorman Engel Curves Econometrica. ,vol. 55, pp. 1451- 1459 ,(1987) , 10.2307/1913566
F. Haas, D. Montgomery, L. Zippin, Topological Transformation Groups. American Mathematical Monthly. ,vol. 63, pp. 439- ,(1956) , 10.2307/2309426