Helical edge states and topological phase transitions in phononic systems using bi-layered lattices

作者: Raj Kumar Pal , Marshall Schaeffer , Massimo Ruzzene

DOI: 10.1063/1.4942357

关键词:

摘要: We propose a framework to realize helical edge states in phononic systems using two identical lattices with interlayer couplings between them. A methodology is presented systematically transform quantum mechanical lattice which exhibits lattice, thereby developing family of states. Parameter spaces topological phase boundaries the vicinity transformed system are illustrated demonstrate robustness imperfections. potential realization terms fundamental building blocks for hexagonal and Lieb lattices. The composed passive components set disks linear springs. Furthermore, by varying spring stiffness, transitions observed, illustrating tunability our

参考文章(27)
Pierre A. Deymier, Keith Runge, Nick Swinteck, Krishna Muralidharan, Torsional topology and fermion-like behavior of elastic waves in phononic structures Comptes Rendus Mecanique. ,vol. 343, pp. 700- 711 ,(2015) , 10.1016/J.CRME.2015.07.003
N. Swinteck, S. Matsuo, K. Runge, J. O. Vasseur, P. Lucas, P. A. Deymier, Bulk elastic waves with unidirectional backscattering-immune topological states in a time-dependent superlattice Journal of Applied Physics. ,vol. 118, pp. 063103- ,(2015) , 10.1063/1.4928619
Pai Wang, Ling Lu, Katia Bertoldi, Topological Phononic Crystals with One-Way Elastic Edge Waves. Physical Review Letters. ,vol. 115, pp. 104302- 104302 ,(2015) , 10.1103/PHYSREVLETT.115.104302
Meng Xiao, Wen-Jie Chen, Wen-Yu He, C. T. Chan, Synthetic gauge flux and Weyl points in acoustic systems Nature Physics. ,vol. 11, pp. 920- 924 ,(2015) , 10.1038/NPHYS3458
Roman Süsstrunk, Sebastian D. Huber, Observation of phononic helical edge states in a mechanical topological insulator Science. ,vol. 349, pp. 47- 50 ,(2015) , 10.1126/SCIENCE.AAB0239
Grazia Salerno, Tomoki Ozawa, Hannah M. Price, Iacopo Carusotto, Floquet topological system based on frequency-modulated classical coupled harmonic oscillators Physical Review B. ,vol. 93, pp. 085105- ,(2016) , 10.1103/PHYSREVB.93.085105
Lifa Zhang, Jie Ren, Jian-Sheng Wang, Baowen Li, Topological nature of the phonon Hall effect. Physical Review Letters. ,vol. 105, pp. 225901- 225901 ,(2010) , 10.1103/PHYSREVLETT.105.225901
W. Beugeling, N. Goldman, C. Morais Smith, Topological phases in a two-dimensional lattice: Magnetic field versus spin-orbit coupling Physical Review B. ,vol. 86, pp. 075118- ,(2012) , 10.1103/PHYSREVB.86.075118
Takahiro Fukui, Yasuhiro Hatsugai, Hiroshi Suzuki, Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances Journal of the Physical Society of Japan. ,vol. 74, pp. 1674- 1677 ,(2005) , 10.1143/JPSJ.74.1674