High order numerical algorithms based on biquadratic spline collocation for two-dimensional parabolic partial differential equations

作者: Jun Liu , Hui Guo , Yao-Lin Jiang , Yan Wang

DOI: 10.1080/00207160.2018.1437260

关键词:

摘要: We report a new algorithm for solving linear parabolic partial differential equations in two space dimension. The employs optimal biquadratic spline collocation discretization a...

参考文章(32)
Alok Dutt, Leslie Greengard, Vladimir Rokhlin, Spectral Deferred Correction Methods for Ordinary Differential Equations Bit Numerical Mathematics. ,vol. 40, pp. 241- 266 ,(1998) , 10.1023/A:1022338906936
Chafik Allouch, Paul Sablonnière, Driss Sbibih, A collocation method for the numerical solution of a two dimensional integral equation using a quadratic spline quasi-interpolant Numerical Algorithms. ,vol. 62, pp. 445- 468 ,(2013) , 10.1007/S11075-012-9598-2
Anita T. Layton, On the choice of correctors for semi-implicit Picard deferred correction methods Applied Numerical Mathematics. ,vol. 58, pp. 845- 858 ,(2008) , 10.1016/J.APNUM.2007.03.003
B. Bialecki, G. Fairweather, A. Karageorghis, Q.N. Nguyen, Optimal superconvergent one step quadratic spline collocation methods Bit Numerical Mathematics. ,vol. 48, pp. 449- 472 ,(2008) , 10.1007/S10543-008-0188-6