Fast rates for noisy clustering

作者: Sébastien Loustau

DOI:

关键词:

摘要: The effect of errors in variables empirical minimization is investigated. Given a loss $l$ and set decision rules $\mathcal{G}$, we prove general upper bound for an based on deconvolution kernel noisy sample $Z_i=X_i+\epsilon_i,i=1,\ldots,n$. We apply this to give the rate convergence expected excess risk clustering. A recent from \citet{levrard} proves that $\mathcal{O}(1/n)$ direct case, under Pollard's regularity assumptions. Here measurements gives form $\mathcal{O}(1/n^{\frac{\gamma}{\gamma+2\beta}})$, where $\gamma$ Holder density $X$ whereas $\beta$ degree illposedness.

参考文章(26)
David Pollard, A Central Limit Theorem for $k$-Means Clustering Annals of Probability. ,vol. 10, pp. 919- 926 ,(1982) , 10.1214/AOP/1176993713
Peter L. Bartlett, Olivier Bousquet, Shahar Mendelson, Local Rademacher complexities Annals of Statistics. ,vol. 33, pp. 1497- 1537 ,(2005) , 10.1214/009053605000000282
Laurent Cavalier, Nicolas W Hengartner, Adaptive estimation for inverse problems with noisy operators Inverse Problems. ,vol. 21, pp. 1345- 1361 ,(2005) , 10.1088/0266-5611/21/4/010
Jianqing Fan, On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems Annals of Statistics. ,vol. 19, pp. 1257- 1272 ,(1991) , 10.1214/AOS/1176348248
David Pollard, Strong Consistency of $K$-Means Clustering Annals of Statistics. ,vol. 9, pp. 135- 140 ,(1981) , 10.1214/AOS/1176345339
Sara A. van de Geer, Empirical Processes in M-Estimation ,(2000)
Clément Levrard, Fast rates for empirical vector quantization Electronic Journal of Statistics. ,vol. 7, pp. 1716- 1746 ,(2013) , 10.1214/13-EJS822
Cristina Butucea, Goodness-of-fit testing and quadratic functional estimation from indirect observations Annals of Statistics. ,vol. 35, pp. 1907- 1930 ,(2007) , 10.1214/009053607000000118
A. Antos, L. Gyorfi, A. Gyorgy, Individual convergence rates in empirical vector quantizer design IEEE Transactions on Information Theory. ,vol. 51, pp. 4013- 4022 ,(2005) , 10.1109/TIT.2005.856976
P.L. Bartlett, T. Linder, G. Lugosi, The minimax distortion redundancy in empirical quantizer design international symposium on information theory. ,vol. 44, pp. 1802- 1813 ,(1997) , 10.1109/18.705560