AQUAPORIN-2 AND -3: Representatives of Two Subgroups of the Aquaporin Family Colocalized in the Kidney Collecting Duct

作者: S. Sasaki , K. Ishibashi , F. Marumo

DOI: 10.1146/ANNUREV.PHYSIOL.60.1.199

关键词:

摘要: Since the molecular identification of first aquaporin in 1992, number proteins known to belong this family has been rapidly increasing. These members may be separated into two subgroups based on gene structure, sequence homology, and function. Regulation water permeability collecting ducts kidney is essential for urinary concentration. Aquaporin-2 -3, which are representative these subgroups, colocalized ducts. Understanding will elucidate differences between aquaporin-2 -3. a vasopressin-regulated channel located apical membrane, aquaporin-3 constitutive basolateral membrane. In contrast aquaporin-3, appears less well regulated, many studies have now identified multiple regulational mechanisms at gene, protein, cell levels aquaporin-2, thus reflecting its physiological importance. Evidence participation pathophysiology water-balance disorders accumulating.

参考文章(131)
Yaoita E, Sasaki S, Fushimi K, Kihara I, Hirata Y, Kawasaki K, Oota K, Yamamoto T, Marumo F, Localization and expression of a collecting duct water channel, aquaporin, in hydrated and dehydrated rats. Experimental Nephrology. ,vol. 3, pp. 193- 201 ,(1995)
T. Yamamoto, S. Sasaki, K. Fushimi, K. Ishibashi, E. Yaoita, K. Kawasaki, F. Marumo, I. Kihara, Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats American Journal of Physiology-cell Physiology. ,vol. 268, ,(1995) , 10.1152/AJPCELL.1995.268.6.C1546
B. K. Kishore, J. M. Terris, M. A. Knepper, Quantitation of aquaporin-2 abundance in microdissected collecting ducts: Axial distribution and control by AVP American Journal of Physiology-renal Physiology. ,vol. 271, ,(1996) , 10.1152/AJPRENAL.1996.271.1.F62
C. Maurel, J. Reizer, J.I. Schroeder, M.J. Chrispeels, The vacuolar membrane protein gamma‐TIP creates water specific channels in Xenopus oocytes. The EMBO Journal. ,vol. 12, pp. 2241- 2247 ,(1993) , 10.1002/J.1460-2075.1993.TB05877.X
S. Hozawa, E. J. Holtzman, D. A. Ausiello, cAMP motifs regulating transcription in the aquaporin 2 gene. American Journal of Physiology-cell Physiology. ,vol. 270, ,(1996) , 10.1152/AJPCELL.1996.270.6.C1695
C. Maurel, R.T. Kado, J. Guern, M.J. Chrispeels, Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP The EMBO Journal. ,vol. 14, pp. 3028- 3035 ,(1995) , 10.1002/J.1460-2075.1995.TB07305.X
R S Sparkes, C Heinzmann, J Horwitz, M B Gorin, C A Jones, T Mohandas, M L Law, J B Bateman, The gene for the major intrinsic protein (MIP) of the ocular lens is assigned to human chromosome 12cen-q14. Investigative Ophthalmology & Visual Science. ,vol. 27, pp. 1351- 1354 ,(1986)
M L Zeidel, H W Harris, T G Hammond, I Jo, Characterization of purified endosomes containing the antidiuretic hormone-sensitive water channel from rat renal papilla. Journal of Biological Chemistry. ,vol. 269, pp. 11993- 12000 ,(1994) , 10.1016/S0021-9258(17)32672-8
K. Luyten, J. Albertyn, W.F. Skibbe, B.A. Prior, J. Ramos, J.M. Thevelein, S. Hohmann, Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. The EMBO Journal. ,vol. 14, pp. 1360- 1371 ,(1995) , 10.1002/J.1460-2075.1995.TB07122.X
W. B. Guggino, B. L. Smith, P. Agre, Jin Sup Jung, G. M. Preston, Molecular structure of the water channel through aquaporin CHIP. The hourglass model. Journal of Biological Chemistry. ,vol. 269, pp. 14648- 14654 ,(1994) , 10.1016/S0021-9258(17)36674-7