Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2−δS12 (M = Si, Sn)

作者: Satoshi Hori , Kota Suzuki , Masaaki Hirayama , Yuki Kato , Toshiya Saito

DOI: 10.1039/C4FD00143E

关键词:

摘要: Solid solutions of the silicon and tin analogous phases superionic conductor Li10MP2S12 (M = Si, Sn) were synthesized by a conventional solid-state reaction in an evacuated silica tube at 823 K. The ranges solid determined to be 0.20 < δ 0.43 −0.25 −0.01 Li10+δM1+δP2−δS12 (0.525 ≤ k 0.60 0.67 0.75 Li4−kM1−kPkS4) for Si Sn systems, respectively. ionic conductivity these systems varied as function changing M ions: showed lower than Ge system, Li10+δGe1+δP2−δS12. change different elements might due lattice size lithium content affecting conduction. relationship between conduction, structure, concentration is discussed based on structural electrochemical information silicon, germanium, systems.

参考文章(16)
Ohmin Kwon, Masaaki Hirayama, Kota Suzuki, Yuki Kato, Toshiya Saito, Masao Yonemura, Takashi Kamiyama, Ryoji Kanno, Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2−δS12 Journal of Materials Chemistry. ,vol. 3, pp. 438- 446 ,(2015) , 10.1039/C4TA05231E
Kenji Homma, Masao Yonemura, Takeshi Kobayashi, Miki Nagao, Masaaki Hirayama, Ryoji Kanno, Crystal structure and phase transitions of the lithium ionic conductor Li3PS4 Solid State Ionics. ,vol. 182, pp. 53- 58 ,(2011) , 10.1016/J.SSI.2010.10.001
Masahiro Murayama, Ryoji Kanno, Michihiko Irie, Shinya Ito, Takayuki Hata, Noriyuki Sonoyama, Yoji Kawamoto, Synthesis of new lithium ionic conductor thio-LISICON-lithium silicon sulfides system Journal of Solid State Chemistry. ,vol. 168, pp. 140- 148 ,(2002) , 10.1006/JSSC.2002.9701
A.D Robertson, A.R West, A.G Ritchie, Review of crystalline lithium-ion conductors suitable for high temperature battery applications Solid State Ionics. ,vol. 104, pp. 1- 11 ,(1997) , 10.1016/S0167-2738(97)00429-3
Alexander Kuhn, Jürgen Köhler, Bettina V. Lotsch, Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12 Physical Chemistry Chemical Physics. ,vol. 15, pp. 11620- 11622 ,(2013) , 10.1039/C3CP51985F
C.H. Hu, Z.Q. Wang, Z.Y. Sun, C.Y. Ouyang, Insights into structural stability and Li superionic conductivity of Li10GeP2S12 from first-principles calculations Chemical Physics Letters. ,vol. 591, pp. 16- 20 ,(2014) , 10.1016/J.CPLETT.2013.11.003
Alexander Kuhn, Oliver Gerbig, Changbao Zhu, Frank Falkenberg, Joachim Maier, Bettina V. Lotsch, A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes Physical Chemistry Chemical Physics. ,vol. 16, pp. 14669- 14674 ,(2014) , 10.1039/C4CP02046D
R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa, T. Ishigaki, T. Morishima, K. Mori, T. Kamiyama, Rietveld analysis software for J-PARC Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment. ,vol. 600, pp. 94- 96 ,(2009) , 10.1016/J.NIMA.2008.11.056
Thomas Kaib, Sima Haddadpour, Manuel Kapitein, Philipp Bron, Cornelia Schröder, Hellmut Eckert, Bernhard Roling, Stefanie Dehnen, New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li+-Conducting Tetralithium ortho-Sulfidostannate Li4SnS4 Chemistry of Materials. ,vol. 24, pp. 2211- 2219 ,(2012) , 10.1021/CM3011315
Fujio Izumi, Koichi Momma, Three-dimensional Visualization in Powder Diffraction Solid State Phenomena. ,vol. 130, pp. 15- 20 ,(2007) , 10.4028/WWW.SCIENTIFIC.NET/SSP.130.15