Assessing the hydrogeochemical impact and distribution of acid sulphate soils, Heart Morass, West Gippsland, Victoria

作者: N.P. Unland , H.L. Taylor , B.R. Bolton , I. Cartwright

DOI: 10.1016/J.APGEOCHEM.2012.07.002

关键词:

摘要: The hydrogeochemical processes associated with the precipitation and oxidation of pyrite during development acid sulphate soils was investigated in coastal floodplain environment Heart Morass, Victoria, Australia. During drought conditions 2009, low-lying areas (0–2 m elevation) were most affected by soils, a median soil pH (pHF) 3.56 to approximately 50 cm depth. Soils below ∼100 cm depth these contain have reduced inorganic S concentrations up 0.85 wt%. Higher (2–6 m) do not 4.74 depth, an average neutralising capacity 3.87 kg H2SO4/t, no appreciable unoxidised pyrite. In Co, Ni, Zn, Mn Fe increased from <2.0, 4.0, 10, 20 2000 mg/kg, respectively, at 56 cm 20, 45, 152 15,000 mg/kg 221 cm higher elevation, Zn 6, 11, 21 12,500 mg/kg 44 cm 19, 47 19,400 mg/kg 239 cm These data indicate acidic leaching metals upper profile both more elevated areas. lowest Al, Fe, Ni surface water or pit 2.43, 0.06, 2.90, 2.89 0.09 mg/L, respectively. are 1–2 orders magnitude than any potential sources around morass can be accounted for evapotranspiration, indicating into groundwater. Excess SO42- central area characterised molar Cl:SO4 ratios <5 δ34S values <10‰. combined define zones depletion reduction (Cl:SO4 ∼ 24, δ34S = 22.7‰) contemporary SO4 enriched oxidised pyritic (Cl:SO4 = 9.9, δ34S = 26.2‰). Average decreased 129 g/kg 15.2 g/kg after flooding 2011, suggesting dissolution mineral salts accumulated profile. Cr Cu 9,522, 18.4, 17.0 14.4 mg/kg 12,800, 22.4, 22.6 22.4 mg/kg flooding, that metal is result changing redox chemistry flooding. This highlights need continuous measurement sampling flood events order better constrain processes.

参考文章(40)
I. White, M.D. Melville, B.P. Wilson, J. Sammut, Reducing acidic discharges from coastal wetlands in eastern Australia Wetlands Ecology and Management. ,vol. 5, pp. 55- 72 ,(1997) , 10.1023/A:1008227421258
Nicholas J Ward, Edward D Burton, P Shand, Richard T Bush, Leigh A Sullivan, R W Fitzpatrick, The classification of acid sulfate soil materials: further modifications ,(2010)
J. Walker, R. C. McDonald, M. S. Hopkins, J. G. Speight, R. F. Isbell, Australian soil and land survey : field handbook Australian soil and land survey: field handbook.. pp. 160- ,(1984)
Ian D. Clark, Peter Fritz, Environmental Isotopes in Hydrogeology ,(1997)
Kieryn Kilminster, Ian Cartwright, A sulfur-stable-isotope-based screening tool for assessing impact of acid sulfate soils on waterways Marine and Freshwater Research. ,vol. 62, pp. 152- 161 ,(2011) , 10.1071/MF10190
Isaac R. Santos, Jason de Weys, Bradley D. Eyre, Groundwater or floodwater? Assessing the pathways of metal exports from a coastal acid sulfate soil catchment Environmental Science & Technology. ,vol. 45, pp. 9641- 9648 ,(2011) , 10.1021/ES202581H
C.E. Rees, A steady-state model for sulphur isotope fractionation in bacterial reduction processes Geochimica et Cosmochimica Acta. ,vol. 37, pp. 1141- 1162 ,(1973) , 10.1016/0016-7037(73)90052-5
A.R. Chivas, A.S. Andrews, W.B. Lyons, M.I. Bird, T.H. Donnelly, Isotopic constraints on the origin of salts in Australian playas. 1. Sulphur Palaeogeography, Palaeoclimatology, Palaeoecology. ,vol. 84, pp. 309- 332 ,(1991) , 10.1016/0031-0182(91)90051-R
L.A. Sullivan, N.J. Ward, R.T. Bush, E.D. Burton, Improved identification of sulfidic soil materials by a modified incubation method Geoderma. ,vol. 149, pp. 33- 38 ,(2009) , 10.1016/J.GEODERMA.2008.11.019