Quantum chaos in a Bose-Hubbard dimer with modulated tunneling

作者: R. A. Kidd , M. K. Olsen , J. F. Corney

DOI: 10.1103/PHYSREVA.100.013625

关键词:

摘要: In the large-N, classical limit, Bose-Hubbard dimer undergoes a transition to chaos when its tunneling rate is modulated in time. We use exact and approximate numerical simulations determine features of dynamically evolving state that are correlated with presence limit. propose statistical distance between initially similar number distributions as reliable measure distinguish regular from chaotic behavior quantum dynamics. Besides being experimentally accessible, can be efficiently reconstructed numerically binned phase-space trajectories truncated Wigner approximation. Although function becomes very irregular regions, method nevertheless able capture accurately beyond-mean-field

参考文章(33)
F. Trimborn, D. Witthaut, H. J. Korsch, Beyond mean-field dynamics of small Bose-Hubbard systems based on the number-conserving phase-space approach Physical Review A. ,vol. 79, pp. 013608- ,(2009) , 10.1103/PHYSREVA.79.013608
Jiangbin Gong, Luis Morales-Molina, Peter Hänggi, Many-body coherent destruction of tunneling. Physical Review Letters. ,vol. 103, pp. 133002- 133002 ,(2009) , 10.1103/PHYSREVLETT.103.133002
Graham R. Dennis, Joseph J. Hope, Mattias T. Johnsson, XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations Computer Physics Communications. ,vol. 184, pp. 201- 208 ,(2013) , 10.1016/J.CPC.2012.08.016
M.K. Olsen, A.S. Bradley, Numerical representation of quantum states in the positive-P and Wigner representations Optics Communications. ,vol. 282, pp. 3924- 3929 ,(2009) , 10.1016/J.OPTCOM.2009.06.033
J. F. Corney, M. K. Olsen, Non-Gaussian pure states and positive Wigner functions Physical Review A. ,vol. 91, pp. 023824- ,(2015) , 10.1103/PHYSREVA.91.023824
Anthony J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts Reviews of Modern Physics. ,vol. 73, pp. 307- 356 ,(2001) , 10.1103/REVMODPHYS.73.307
Tobias Graß, Bruno Juliá-Díaz, Marek Kuś, Maciej Lewenstein, Quantum chaos in SU(3) models with trapped ions. Physical Review Letters. ,vol. 111, pp. 090404- ,(2013) , 10.1103/PHYSREVLETT.111.090404
G. L. Salmond, C. A. Holmes, G. J. Milburn, Dynamics of a strongly driven two-component Bose-Einstein condensate Physical Review A. ,vol. 65, pp. 033623- ,(2002) , 10.1103/PHYSREVA.65.033623
R. J. Lewis-Swan, M. K. Olsen, K. V. Kheruntsyan, Approximate particle number distribution from direct stochastic sampling of the Wigner function Physical Review A. ,vol. 94, pp. 033814- ,(2016) , 10.1103/PHYSREVA.94.033814
Sandro Wimberger, Nonlinear Dynamics and Quantum Chaos Nonlinear Dynamics and Quantum Chaos. Series: Graduate Texts in Physics. ,(2014) , 10.1007/978-3-319-06343-0