Neural network analysis of head-flow curves in deep well pumps

作者: Mustafa Gölcü

DOI: 10.1016/J.ENCONMAN.2005.06.023

关键词:

摘要: Abstract In impellers with splitter blades, the difficulty in calculation of flow area impeller is because unknown rate occurring two separate areas when blades are added. Experimental studies were made to investigate effects blade length on deep well pump performance for different numbers blades. Head-flow curves investigated using artificial neural networks (ANNs). Gradient descent (GD), momentum (GDM) and Levenberg–Marquardt (LM) learning algorithms used networks. completed obtain training test data. Blade number ( z ), non-dimensional L ¯ ) Q as input layer, while output head H m ). For testing data, root mean squared error (RMSE), fraction variance R 2 absolute percentage (MAPE) found be 0.1285, 0.9999 1.6821%, respectively. With these results, we believe that ANN can prediction head-flow an appropriate method

参考文章(17)
A. Chouai, S. Laugier, D. Richon, Modeling of thermodynamic properties using neural networks Fluid Phase Equilibria. ,vol. 199, pp. 53- 62 ,(2002) , 10.1016/S0378-3812(01)00801-9
Hiroyuki MIYAMOTO, Yukitoshi NAKASHIMA, Yoshihiro YASUNAGA, Kazuaki SHIRAMOTO, 遠心羽根車の流動に関する研究 : 第2報,シュラウド付き羽根車の翼間流れ計測 日本機械学会論文集 B編. ,vol. 55, pp. 3108- 3112 ,(1989) , 10.1299/KIKAIB.55.3108
John Tuzson, Centrifugal Pump Design ,(2000)
Robert E. Uhrig, Lefteri H. Tsoukalas, Fuzzy and neural approaches in engineering ,(1997)
Erol Arcaklioğlu, İsmet Çelıkten, A diesel engine's performance and exhaust emissions Applied Energy. ,vol. 80, pp. 11- 22 ,(2005) , 10.1016/J.APENERGY.2004.03.004
Mansour A Karkoub, Osama E Gad, Mahmoud G Rabie, Predicting axial piston pump performance using neural networks Mechanism and Machine Theory. ,vol. 34, pp. 1211- 1226 ,(1999) , 10.1016/S0094-114X(98)00086-X
Soteris A Kalogirou, Constantinos C Neocleous, Christos N Schizas, Artificial neural networks for modelling the starting-up of a solar steam-generator Applied Energy. ,vol. 60, pp. 89- 100 ,(1998) , 10.1016/S0306-2619(98)00019-1
H. Bechtler, M.W. Browne, P.K. Bansal, V. Kecman, New approach to dynamic modelling of vapour-compression liquid chillers: artificial neural networks Applied Thermal Engineering. ,vol. 21, pp. 941- 953 ,(2001) , 10.1016/S1359-4311(00)00093-4
S.A Kalogirou, Applications of artificial neural networks in energy systems Energy Conversion and Management. ,vol. 40, pp. 1073- 1087 ,(1999) , 10.1016/S0196-8904(99)00012-6