Euclidean Nets: An Automatic and Reversible Geometric Smoothing of Discrete 3D Object Boundaries

作者: Achille J. -P. Braquelaire , Arnault Pousset

DOI: 10.1007/3-540-44438-6_17

关键词:

摘要: In this work we describe a geometric method to smooth the boundary of discrete 3D object. The is reversible in sense that can be retrieved by digitizing smoothed one. To end, propose representation volume call Euclidean net and which generalization three-dimensional space Path introduced Braquelaire Vialard. nets associated either voxel based boundaries or inter-voxel boundaries. paper focus on first approach.

参考文章(30)
Anne Vialard, Luc Brun, Jean-Pierre Braquelaire, Inter-pixel eudlidean pahts for image analysis discrete geometry for computer imagery. pp. 193- 204 ,(1996)
Jean-Pierre Braquelaire, Luc Brun, Anne Vialard, Inter-pixel Euclidean paths for image analysis discrete geometry for computer imagery. pp. 193- 204 ,(1996) , 10.1007/3-540-62005-2_16
J. Vittone, J. M. Chassery, (n, m)-Cubes and Farey Nets for Naive Planes Understanding discrete geometry for computer imagery. pp. 76- 87 ,(1999) , 10.1007/3-540-49126-0_7
J. Vittone, J. M. Chassery, Coexistence of Tricubes in Digital Naive Plane discrete geometry for computer imagery. pp. 99- 110 ,(1997) , 10.1007/BFB0024833
Pierre Tellier, Isabelle Debled-Rennesson, 3D Discrete Normal Vectors discrete geometry for computer imagery. ,vol. 1568, pp. 447- 458 ,(1999) , 10.1007/3-540-49126-0_35
Anne Vialard, Geometrical parameters extraction from discrete paths discrete geometry for computer imagery. pp. 24- 35 ,(1996) , 10.1007/3-540-62005-2_3
Isabelle Debled-Rennesson, Etude et reconnaissance des droites et plans discrets Strasbourg 1. ,(1995)
Jean-Pierre Reveillès, Géométrie discrète, calcul en nombres entiers et algorithmique Université Louis Paster. ,(1991)
Rémy Malgouyres, A definition of surfaces of Z3 A new 3D discrete Jordan theorem Theoretical Computer Science. ,vol. 186, pp. 1- 41 ,(1997) , 10.1016/S0304-3975(96)00213-7