A General System of Nonlinear Functional Equations in non- Archimedean Spaces

作者: Mohammad Bagher Ghaemi , Hamid Majani , Madjid Eshaghi Gordji

DOI: 10.5666/KMJ.2013.53.3.419

关键词:

摘要: In this paper, we prove the generalized Hyers-Ulam-Rassias stability for a system of functional equations, called general nonlinear in non-Archimedean normed spaces and Menger probabilistic spaces.

参考文章(31)
M. Eshaghi Gordji, M.B. Savadkouhi, Stability of a mixed type cubic–quartic functional equation in non-Archimedean spaces Applied Mathematics Letters. ,vol. 23, pp. 1198- 1202 ,(2010) , 10.1016/J.AML.2010.05.011
V S Vladimirov, I V Volovich, E I Zelenov, p-adic analysis and mathematical physics Ser.Sov.East Eur.Math.. ,vol. 1, pp. 1- 319 ,(1994) , 10.1142/1581
C Baak, M Sal Moslehian, ON THE STABILITY OF ORTHOGONALLY CUBIC FUNCTIONAL EQUATIONS Kyungpook Mathematical Journal. ,vol. 47, pp. 69- 76 ,(2007)
Andrei Khrennikov, Non-Archimedean Analysis Springer Netherlands. pp. 101- 129 ,(1997) , 10.1007/978-94-009-1483-4_3
Kil-Woung Jun, Yang-Hi Lee, A Generalization of the Hyers-Ulam-Rassias Stability of the Pexiderized Quadratic Equations, II Kyungpook Mathematical Journal. ,vol. 47, pp. 91- 103 ,(2007)
B. Schweizer, A. Sklar, Probabilistic metric spaces ,(1983)
Stanislaw M. Ulam, Problems in modern mathematics ,(1964)
L. M. Arriola, W. A. Beyer, Stability of the Cauchy functional equation over p-adic fields. Real analysis exchange. ,vol. 31, pp. 125- 132 ,(2006) , 10.14321/REALANALEXCH.31.1.0125
Mohammad Bagher Ghaemi, Hamid Majani, Majid Eshaghi Gordji, APPROXIMATELY QUINTIC AND SEXTIC MAPPINGS ON THE PROBABILISTIC NORMED SPACES Bulletin of The Korean Mathematical Society. ,vol. 49, pp. 339- 352 ,(2012) , 10.4134/BKMS.2012.49.2.339