On Steady Non-Newtonian Fluids with Growth Conditions in Generalized Orlicz Spaces

作者: Agnieszka Świerczewska-Gwiazda , Piotr Gwiazda

DOI: 10.12775/TMNA.2008.038

关键词:

摘要: We are interested in the existence of weak solutions to steady non-Newtonian fluids with nonstandard growth conditions of the Cauchy stress tensor. Since the Lp framework is not …

参考文章(13)
Fabrice Bethuel, Gerhard Huisken, Stefan Müller, Klaus Steffen, Stefan Müller, None, Variational models for microstructure and phase transitions Springer, Berlin, Heidelberg. pp. 85- 210 ,(1999) , 10.1007/BFB0092670
Michael Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory Lecture Notes in Mathematics. ,vol. 1748, ,(2000) , 10.1007/BFB0104029
J. Nečas, J. Málek, M. Růžička, M. Rokyta, Weak and Measure-Valued Solutions to Evolutionary PDEs ,(1996)
Julian Musielak, Orlicz Spaces and Modular Spaces ,(1983)
J. M. Ball, A version of the fundamental theorem for young measures LNP. ,vol. 344, pp. 207- 215 ,(1989) , 10.1007/BFB0024945
R Landes, On Galerkin's method in the existence theory of quasilinear elliptic equations Journal of Functional Analysis. ,vol. 39, pp. 123- 148 ,(1980) , 10.1016/0022-1236(80)90009-9
Thomas Donaldson, Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces Journal of Differential Equations. ,vol. 10, pp. 507- 528 ,(1971) , 10.1016/0022-0396(71)90009-X
Jean-Pierre Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients Transactions of the American Mathematical Society. ,vol. 190, pp. 163- 205 ,(1974) , 10.1090/S0002-9947-1974-0342854-2
I. A. Brigadnov, A. Dorfmann, Mathematical modeling of magnetorheological fluids Continuum Mechanics and Thermodynamics. ,vol. 17, pp. 29- 42 ,(2005) , 10.1007/S00161-004-0185-1
Vesa Mustonen, Matti Tienari, On monotone-like mappings in Orlicz-Sobolev spaces Mathematica Bohemica. ,vol. 124, pp. 255- 271 ,(1999) , 10.21136/MB.1999.126248